Hierarchical Motion of Charged Jets in Electrospinning and Nanofibers with Minimal Diameter of about 5nm

Article Preview

Abstract:

Polyvinyl alcohol (PVA) with a degree of 1750±50 was successfully fabricated into nanofibers via the traditional electrospinning process. Daughter charged jets and combined fibers were observed. A combined fiber might be simple combination of two separate fibers without mass transfer, or it is a daughter cascade caused in hierarchical motion of a charged jet with mass/energy transfer. Minimal fiber reaches as small as 5nm (50 angstroms) in diameter, this might be the smallest artificial fiber, which might have excellent properties due to nanoeffect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-20

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chen, T.X. Liu, X.P. Zhou, W.C. Tjiu, H.Q. Hou. Electrospinning Fabrication of High Strength and Toughness Polyimide Nanofiber Membranes Containing Multiwalled Carbon Nanotubes, J. Phys. Chem. 29 (2009) 9741-9748.

DOI: 10.1021/jp9025128

Google Scholar

[2] P.P. Tsai, J.R. Roth, W.W. Chen. Strength, Surface Energy, and Ageing of Meltblown and Electrospun Nylon and Polyurethane (PU) Fabrics Treated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™), Text Res J. 12 (2005) 819-825.

DOI: 10.1177/0040517505057526

Google Scholar

[3] J.P. Tessonnier, L. Pesant, C. Pham-Huu, G. Ehret, M.J. Ledoux. Carbon nanotubes: a highly selective support for the C=C hydrogenation reaction, Stud. Surf. Sci. Catal. 143(2002) 697-704.

DOI: 10.1016/s0167-2991(00)80712-0

Google Scholar

[4] Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, C. Y. Yang. Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays, Nano Lett. 12 (2004) 2403-2407.

DOI: 10.1021/nl048506t

Google Scholar

[5] L.X. He, S.C. Tjong. Nonlinear electrical conduction in percolating systems induced by internal field emission, J. Nanosci. Nanotechno.5 (2011) 3916-3921.

DOI: 10.1016/j.synthmet.2010.12.007

Google Scholar

[6] P. Gibson, H. Schreuder-Gibson, D. Rivin. Transport properties of porous membranes based on electrospun nanofibers, Colloid Surface A. 187 (2001) 469-481.

DOI: 10.1016/s0927-7757(01)00616-1

Google Scholar

[7] A. Formalhals, inventor; no assignee; US Patent 1,975,504, 1934.

Google Scholar

[8] J.H. He, Effect of temperature on surface tension of a bubble and hierarchical ruptured bubbles for nanofiber fabrication, Therm. Sci., 16 (2012) 327-330.

DOI: 10.2298/tsci111111033h

Google Scholar

[9] J.H. He, Y. Liu, Control of bubble size and bubble number in bubble electrospinning, Comput. Math. Appl., 64 (2012) 1033-1035.

DOI: 10.1016/j.camwa.2012.03.021

Google Scholar

[10] J.H. He. The Smaller, the Better: From the Spider-Spinning to Bubble-Electrospinning, Acta Physica Polonica A. 121 (2012) 254-256

DOI: 10.12693/aphyspola.121.254

Google Scholar

[11] M. Sangmanee, S. Maensiri. Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning, Appl. Phys. A: Mater. Sci. Process. 97 (2009) 167-177.

DOI: 10.1007/s00339-009-5256-5

Google Scholar

[12] X.F. Wang, B. Ding, J.Y. Yu, Y. Si, S.B. Yang, G. Sun. Electro-netting: Fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing, Nanosci. 3 (2011) 911-915.

DOI: 10.1039/c0nr00783h

Google Scholar

[13] R.R. Yang, J.H. He, J.Y. Yu, L. Xu. Bubble-electrospinning for Fabrication of Nanofibers with Diameter of about 20nm, Int J Nonlinear Sci.11 (2010) 163-164.

DOI: 10.1515/ijnsns.2010.11.s1.163

Google Scholar

[14] J.H. He, H.Y. Kong, R.R. Yang, et al., Review on fiber morphology obtained by the bubble electrospinning and Blown bubble spinning, Therm. Sci., 16 (2012), 1263-1279.

DOI: 10.2298/tsci1205263h

Google Scholar