Effect of Ultrasonic Vibration on Electrospun Poly(vinyl Alcohol) (PVA) Nanofibers

Article Preview

Abstract:

Poly (vinyl alcohol) (PVA), a classical biodegradable polymer, is successfully fabricated into nanofibers via the vibration-electrospinning, and the obtained nanofibers are characterized by the scanning electron microscopy (SEM). The viscosity and electrical conductivity of PVA solution vary dramatically with the ultrasonic radiation time and intensity. The novel strategy can produce finer nanofibers than those obtained without ultrasonic vibration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Gentsch, B. Boysen, A. Lankenau, H.G. Borner, Single-step Electrospinning of Bimodal Fiber Meshes for Easa of Cellular Infiltration, Macromol. Rapid Commun. 31 (2000) 59-64.

DOI: 10.1002/marc.200900431

Google Scholar

[2] M.S. EI Naschie, Nanotechnology for the developing world, Chaos Soliton Fract. 30 (2006) 769–73.

Google Scholar

[3] J.H. He, Y.Q. Wan, L. Xu, Nano-effects, quantum-like properties in electrospun nanofibers, Chaos Soliton Fract. 33 (2007) 26-37.

DOI: 10.1016/j.chaos.2006.09.023

Google Scholar

[4] J.H. He, An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, Int. J. Mod. Phys. B. 22 (2008) 3487–3578.

DOI: 10.1142/s0217979208048668

Google Scholar

[5] L. Xu, L. Wang, N. Faraz, A thermo-electro-hydrodynamic model for vibration-electrospinning process, Therm. Sci. 15(S) (2011) S131-S135.

DOI: 10.2298/tsci11s1131x

Google Scholar

[6] J.H. He, Effect of temperature on surface tension of a bubble and hierarchical ruptured bubbles for nanofiber fabrication, Therm. Sci., 16 (2012),325-328.

DOI: 10.2298/tsci111111033h

Google Scholar

[7] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials. 26 (2005) 2603-2610.

DOI: 10.1016/j.biomaterials.2004.06.051

Google Scholar

[8] B. Ding, M.R. Wang, J.Y. Yu, G. Sun, Gas Sensors Based on Electrospun Nanofibers, Sensors. 9 (2009) 1609-1624.

DOI: 10.3390/s90301609

Google Scholar

[9] A.C. Patel, S.X. Li, C. Wang, W.J. Zhang, Y. Wei, Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications, Chem. Mater. 19 (2007) 1231-1238.

DOI: 10.1021/cm061331z

Google Scholar

[10] J.-H. He, H.-Y. Kong, R.-R. Yang, et al., Review on fiber morphology obtained by the bubble electrospinning and Blown bubble spinning, Therm. Sci., 16 (2012)

DOI: 10.2298/tsci1205263h

Google Scholar

[11] J. Zhang, Constitutive equations of polymer melts under vibration force fields: a review, International Journal of Nonlinear Sciences and Numerical Simulation 5 (1) (2004) 37–44.

DOI: 10.1515/ijnsns.2004.5.1.37

Google Scholar

[12] A.I. Isayev, C.M. Wong, X. Zeng, Effect of oscillations during extrusion on rheology and mechanical properties of polymers, Advances in Polymer Technology 40 (2003) 31–45.

DOI: 10.1002/adv.1990.060100104

Google Scholar

[13] J. Zhang, J.-P. Qu, Primary research on normal stress difference for polymer melts in vibration force field, International Journal of Nonlinear Sciences and Numerical Simulation 5 (1) (2004) 97–98.

DOI: 10.1515/ijnsns.2004.5.1.97

Google Scholar

[14] B.H. Bersted, Investigation of the oscillating flow phenomenon in high density polyethylene, Journal of Applied Polymer Science 28 (2003) 2777–2791.

DOI: 10.1002/app.1983.070280909

Google Scholar

[15] H.Wu, S. Guo, G. Chen, J. Lin,W. Chen, H.Wang, Ultrasonic oscillations effect on rheological and processing properties of metallocene-catalyzed linear low density polyethylene, Journal of Applied Polymer Science 90 (2003) 1873–1878.

DOI: 10.1002/app.12859

Google Scholar

[16] W.S. Lyoo, J.H. Youk, S.W. Lee, W.H. Park, Preparation of porous ultrafine poly(vinyl cinnamate) fibers, Materials Letters 59 (28) (2005) 3558–3562.

DOI: 10.1016/j.matlet.2005.06.027

Google Scholar

[17] S.O. Han, W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Ultrafine porous fibers electrospun from cellulose triacetate, Materials Letters 59 (24–25) (2005) 2998–3001

DOI: 10.1016/j.matlet.2005.05.003

Google Scholar

[18] H.K. Lee, E.H. Jeong, C.K. Baek, J.H. Youk, One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles, Materials Letters 59 (23) (2005) 2977–2980.

DOI: 10.1016/j.matlet.2005.05.005

Google Scholar

[19] A.-M. Azad, Fabrication of yttria-stabilized zirconia nanofibers by electrospinning, Materials Letters 60 (1) (2006) 67–72.

DOI: 10.1016/j.matlet.2005.07.085

Google Scholar

[20] J. Yuh, J.C. Nino, W.M. Sigmund, Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning,Materials Letters 59 (28) (2005) 3645–3647.

DOI: 10.1016/j.matlet.2005.07.008

Google Scholar

[21] W.K. Son, J.H. Youk, T. Seung W.H. Park, Effect of pH on electrospinning of poly(vinyl alcohol), Materials Letters 59 (12) (2005) 1571–1575.

DOI: 10.1016/j.matlet.2005.01.025

Google Scholar

[22] P.Gupta, C. Elkins, T.E. Long, et al., Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer 46 (13) (2005) 4799–4810.

DOI: 10.1016/j.polymer.2005.04.021

Google Scholar

[23] Y. Wang, Q. Yang, G. Shan, C. Wang, J. Du, S. Wang, Y. Li, X. Chen, X. Jing, Y. Wei, Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning, Materials Letters 59 (24–25) (2005) 3046–3049.

DOI: 10.1016/j.matlet.2005.05.016

Google Scholar

[24] J.M. Deitzel, J.D. Kleinmeyer, J.K. Hirvonen, et al., Controlled deposition of electrospun poly(ethylene oxide) fibers, Polymer 42 (2001) 8163–8170.

DOI: 10.1016/s0032-3861(01)00336-6

Google Scholar

[25] J. Liu, S. Kumar, Microscopic polymer cups by electrospinning, Polymer 46 (10) (2005) 3211–3214.

DOI: 10.1016/j.polymer.2004.11.116

Google Scholar

[26] A. Wang, A.J. Hsieh, G.C. Rutledge, Electrospinning of poly(MMA-co-MAA) copolymers and their layered silicate nanocomposites for improvedthermal properties, Polymer 46 (10) (2005) 3407–3418.

DOI: 10.1016/j.polymer.2005.02.099

Google Scholar

[27] A. Theron, E. Zussman, A.L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibers, Nanotechnology 12 (2001) 384–390.

DOI: 10.1088/0957-4484/12/3/329

Google Scholar

[28] P.K. Baumgarten, Electrostatic spinning of acrylic microfibers, Journal of Colloid and Interface Science 36 (1) (1971) 71–79.

DOI: 10.1016/0021-9797(71)90241-4

Google Scholar

[29] H.U. Borgstedt, Cavitation and the ultrasonic degradation of highpolymers, British Journal of Applied Physics 15 (1964) 773–774.

DOI: 10.1088/0508-3443/15/6/135

Google Scholar

[30] E.-R. Kenawy, G.L. Bowlin, K. Mansfield, et al., Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lacticacid), and a blend, Journal of Controlled Release 81 (2002) 57–64.

DOI: 10.1016/s0168-3659(02)00041-x

Google Scholar