Vibration and Heat Effect on Electrospinning Modeling

Article Preview

Abstract:

Weakness of electrospun nanofiber has impeded its industrial applications for a long period. Our studies reveal a promising solution to this problem by applying ultrasonic vibration to the polymer solutions during electrospinning. To well understand and control of this new technology, a mathematical model is much needed. During the vibration, heat and vibration induced by the ultrasonic energy will not only affect the rheological properties of the polymer solution and the energy balance of the electrospinning system, but play an important role on the current generated in the charged jet. Taking consideration of such impacts of ultrasonic vibration, governing equations for current, momentum and energy are derived, and a simplified model is also provided for practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. H. Reneker; A. L. Yarin, Fong, H.; S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics. 87 (2000) 4531-4547.

DOI: 10.1063/1.373532

Google Scholar

[2] Y. Dzenis, Material science: Spinning continuous fibers for nanotechnology. Science. 304 (2004) 1917-1919.

DOI: 10.1126/science.1099074

Google Scholar

[3] K. Lozano, S. Yang, R. E. Jones, Nanofiber toughened polyethylene composites. Carbon. 42 (2004) 2329-2331.

DOI: 10.1016/j.carbon.2004.03.021

Google Scholar

[4] F. Ko, M. Gandhi, Producing nanofiber structures by electrospinning for tissue engineering. Nanofibers and nanotechnology in textiles. 22 (2007).

DOI: 10.1533/9781845693732.1.22

Google Scholar

[5] R. Gopal, S. Kaur, Z. Ma, C. Chan, Ramakrishna, S.; Matsuura, T. Electrospun nanofibrous filtration membrane. Journal of Membrane Science. 281 (2006) 581-586.

DOI: 10.1016/j.memsci.2006.04.026

Google Scholar

[6] C. Kim, S. H. Park, W. J. Lee, K. S. Yang, Characteristics of supercapaitor electrodes of pbi-based carbon nanofiber web prepared by electrospinning. Electrochimica Acta. 50 (2004) 877-881.

DOI: 10.1016/j.electacta.2004.02.071

Google Scholar

[7] M. Gandhi, H. Yang, L. Shor, F. Ko, Post-spinning modification of electrospun nanofiber nanocomposite from bombyx mori silk and carbon nanotubes. Polymer. 50 (2009) 1918-1924.

DOI: 10.1016/j.polymer.2009.02.022

Google Scholar

[8] J. W. S Hearle, Fatigue in fibres and plastics (a review). Journal of Materials Science. 2 (1967) 474-488.

Google Scholar

[9] H. G. Chae, S. Kumar, Making strong fibers. Science 319 (2008) 908-909.

Google Scholar

[10] L. R. G. Treloar, Calculations of elastic moduli of polymer crystals: III. Cellulose. Polymer. 1 (1960) 290-303.

DOI: 10.1016/0032-3861(60)90040-9

Google Scholar

[11] J. H. He, Y. Q. Wan, J. Y. Yu, Application of vibration technology to polymer electrospinning. International Journal of Nonlinear Sciences and Numerical Simulation. 5 (2004) 253-262.

Google Scholar

[12] Y. Q. Wan, J. H. He, J. Y. Yu, Carbon nanotube-reinforced polyacrylonitrile nanofibers by vibration-electrospinning. Polymer International. 56 (2007) 1367-1370.

DOI: 10.1002/pi.2358

Google Scholar

[13] Y. Q. Wan, J. H. He, J. Y. Yu, Y. Wu, Electrospinning of high molecule PEO solution. Journal of Applied Polymer. Science. 103 (2007) 3840-3843.

DOI: 10.1002/app.25472

Google Scholar

[14] Y. Q Wan, F. Ko, Electrospinning of multi-walled carbon nanotubes reinforced bamboo cellulosic fibres. In TAPPI 2009 International Conference on Nanotechnology for the Forest Products Industry, Edmonton, 2009.

Google Scholar

[15] J. H., He. Effect on temperature on surface tension of a bubble and hierarchical ruptured bubbles for nanofiber fabrication. Thermal Science. 16 (2012) 325-328.

DOI: 10.2298/tsci111111033h

Google Scholar

[16] J. H. He, H. Y. Kong, R. Yang, Review on fiber morphology obtained by the bubble electrospinning and blown bubble spinning. Thermal Science. 16 (2012).

DOI: 10.2298/tsci1205263h

Google Scholar

[17] A.F. Spivak, Y.A. Dzenis, D.H. Reneker, A model of steady state jet in the electrospinning process. Mechanics Research Communications 27 (2000) 37-42.

DOI: 10.1016/s0093-6413(00)00060-4

Google Scholar

[18] Y.Q. Wan, Q. Guo, N. Pan, Thermo-electro-hydrodynamic model for electrospinning process. International Journal of Nonlinear Sciences and Numerical Simulation. 5 (2004) 5-8.

DOI: 10.1515/ijnsns.2004.5.1.5

Google Scholar

[19] J.H. He, Y.Q. Wan, J.Y. Yu, Allometric scaling and instability in electrospinning. International Journal of Nonlinear Sciences and Numerical Simulation. 5 (2004) 243-252.

DOI: 10.1515/ijnsns.2004.5.3.243

Google Scholar