Monte Carlo Analysis of Effect of Alloy Scattering on Electron Transport in Wurtzite Zn1-xMgxO

Article Preview

Abstract:

Steady-state and transient electron characteristics of wurtzite Zn1xMgxO are studied in detail. An ensemble Monte Carlo model is established considering alloy scattering. From the steady-state characteristics, it is found that alloy scattering makes the drift velocity decrease at different electric fields. For 10% Mg, the transient peak drift velocity decreases from 2.48×107 cm/s to 2.13×107 cm/s at 2000 kV/cm. While for 20% Mg, a higher electric field is needed for the onset of the overshoot, which corresponds to the larger peak electric field in the steady-state velocity-field characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

861-864

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Chen, J.R. Yang and M. Shiojiri: Semicond. Sci. Technol. Vol. 27 (2012) No. 7.

Google Scholar

[2] I.C. Yao, T.Y. Tseng and P. Lin: Sensors and Actuators A. Vol. 178 (2012), p.26.

Google Scholar

[3] Y.S. Song, N.J. Seong, K.J. Choi, S.O. Ryu: Thin Solid Films (2013), in press.

Google Scholar

[4] H. Chen, S.L. Gu, J.G. Liu, J.D. Ye and K. Tang: Appl. Phys. Lett. Vol. 99 (2011) No. 21.

Google Scholar

[5] K. Han, N. Tang, J.D. Ye, J.X. Duan and Y.C. Liu: Appl. Phys. Lett. Vol. 100 (2012) No. 19.

Google Scholar

[6] K. Koike, I. Nakashima, K. Hashimoto, S. Sasa and M. Inoue: Appl. Phys. Lett. Vol. 87 (2005) No. 11.

Google Scholar

[7] S. Sasa, M. Ozaki, K. Koike, M. Yano and M. Inoue: Appl. Phys. Lett. Vol. 89 (2006) No. 5.

Google Scholar

[8] A. Shunsuke, T. Atsushi, N. Ken, O. Akira and K. Masashi: Jpn. J. Appl. Phys. Vol. 50 (2011).

Google Scholar

[9] D.J. Cohen, K.C. Ruthe and S.A. Barnett: J. Appl. Phys. Vol. 96 (2004) No. 1.

Google Scholar

[10] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa: Appl. Phys. Lett. Vol. 72 (1998) No. 19.

DOI: 10.1063/1.121384

Google Scholar

[11] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77(1996).

Google Scholar

[12] Markus Heinemann and Christian Heiliger: J. Appl. Phys. Vol. 110 (2011).

Google Scholar

[13] Z. Yarar: J. Electron. Mater. Vol. 40 (2011) No. 4.

Google Scholar

[14] J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht and K.F. Brennan: J. Appl. Phys. Vol. 86 (1999) No. 12.

Google Scholar

[15] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell and W.C. Harsch: Solid State Commun. Vol. 105(1998), p.399.

DOI: 10.1016/s0038-1098(97)10145-4

Google Scholar

[16] J. Singh: Physics of Semiconductors and Their Heterostructures (McGraw-Hill, Singapore 1993).

Google Scholar

[17] J.J. Tietjen and L.R. Weiseberg: Appl. Phys. Lett. Vol. 7 (1965) No. 10.

Google Scholar

[18] J.W. Harrison and J.R. Hauser: J. Appl. Phys. Vol. 47 (1976) No. 1.

Google Scholar

[19] J.C. Phillips: Rev. Mod. Phys. Vol. 42 (1970).

Google Scholar