Structural Transformation Relationship for Hafnia Ferroelectric Phase

Article Preview

Abstract:

The ferroelectricity of hafnia-based thin films with a dominant phase of orthorhombic Pca21 has been reported. However, the relationship of structural transformations between the orthorhombic Pca21 and other hafnia structures remains unclear. In this work, all the structures have been optimized. Then, the fluorite-related structures have been used to analyze the structural relationship. Calculations of the lattice energies and the relative atomic displacements between the structures suggest that the Pca21 phase may originate from the P42/nmc or Pbca phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

865-870

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Anderson. Ferro Electric-materials as Storage Elements for Digital Computers and Swithicing Systems (ACM, USA, 1952), 81.

Google Scholar

[2] M. Setter, D. Damjanovic, L. Eng, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada and S. Streiffer: J. Appl. Phys., 100(2006), 051606.

DOI: 10.1063/1.2393042

Google Scholar

[3] S. -A. Wu: IEEE Tran. Electron Devices, 21 (1974), 499.

Google Scholar

[4] T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger: Appl. Phys. Lett., 99 (2011, 102903.

DOI: 10.1063/1.3634052

Google Scholar

[5] T.S. Böscke, S. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger, and T. Mikolajick: Appl. Phys. Lett., 99 (2011), 112904.

DOI: 10.1063/1.3636434

Google Scholar

[6] J. Müller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey: J. Appl. Phys., 110 (2011), 114113.

DOI: 10.1063/1.3667205

Google Scholar

[7] S. Müller, J. Müller, A. Singh, S. Riedel, J. Sundqvist, U. Schröder, and T. Mikolajick: Adv. Funct. Mater., 22 (2012), 2412.

Google Scholar

[8] S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick: ECS J. Solid State Sci. Technol., 1 (2012), N123.

DOI: 10.1149/2.002301jss

Google Scholar

[9] J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick: Nano Lett., 12 (2012), 4318.

DOI: 10.1021/nl302049k

Google Scholar

[10] K.J. Hubbard and D.G. Schlom: J. Mater. Res., 11 (1996), 2757.

Google Scholar

[11] D. McCullough and K.N. Trueblood: Acta Crystallogr., 12 (1959), 507.

Google Scholar

[12] R. Ruh and P.W.R. Corfield: J. Am. Ceram. Soc., 53 (1970), 126.

Google Scholar

[13] J.E. Jaffe, R.A. Bachorz and M. Gutowski: Phys. Rev. B, 72 (2005), 144107.

Google Scholar

[14] R. Puthenkovilakam and J.P. Chang: J. Appl. Phys., 96 (2004), 2701.

Google Scholar

[15] L.G. Liu: J. Phys. Chem. Solids, 41 (1980), 331.

Google Scholar

[16] A. Jayaraman, S.Y. Wang, S.K. Sharma and L.C. Ming: Phys. Rev. B, 48 (1993), 9205.

Google Scholar

[17] G. Kresse and J. Hafner: Phys. Rev. B, 49 (1994), 14251.

Google Scholar

[18] H.J. Monkhorst and J.D. Pack: Phys. Rev. B, 13 (1976), 5188.

Google Scholar

[19] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett., 77 (1996), 3865.

Google Scholar

[20] P.E. Blöchl: Phys. Rev. B, 50 (1994), 17953.

Google Scholar

[21] J.E. Lowther, J.K. Dewhurst, J.M. Leger and J. Haines: Phys. Rev. B, 60 (1999), 14485.

Google Scholar

[22] J. Kang, E. -C. Lee, and K. J. Chang: Phys. Rev. B 68, 054106 (2003).

Google Scholar

[23] S. Desgreniers and K. Lagarec: Phys. Rev. B, 59 (1999), 8467.

Google Scholar

[24] J. Wang, H.P. Li and R. Stevens: J. Mater. Sci., 27 (1992), 5397.

Google Scholar

[25] D.M. Adams, S. Leonard, D.R. Russel and R. J. Cernik: J. Phys. Chem. Solids, 52 (1991), 1181.

Google Scholar