Improving the Performance of Organic Light Emitting Diodes by Doping PEDOT:PSS

Article Preview

Abstract:

Organic light emitting diodes (OLEDs) have the potential to compete with other rivals in applications of lighting and small size displays because of low power consumption. To achieve commercial standard, however, the luminance efficiency and device lifetime of the OLEDs still need to be improved. This work characterizes the performance of OLEDs improved by Poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS). PEDOT:PSS films are deposited on ITO glass by spin coating at the first, and then the hole transporting layer and electron transporting layer of the OLED materials N, N '-bis (naphthalene-1-yl)-N, N '-bis (phenyl) benzidine/tris-(8-hydroxyquinoline) aluminum (NPB/Alq3) are thermally evaporated with 1 Å/s deposition rate. The thickness effects of the PEDOT:PSS on the OLED performance are studied. The result shows that PEDOT:PSS effectively improves the luminance of the OLEDs, where 40 nm thick PEDOT:PSS increases 12% and 30 nm thick increases 31% luminance, respectively. Furthermore, the effects of the PEDOT:PSS on the mechanical properties of the OLED are also studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

1130-1135

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.W. Tang, S.A. Van Slyke, Organic electroluminescent diodes, Applied Physics Letter 51 (1987) 913–915.

Google Scholar

[2] H.Y. Yu, X.D. Feng, D. Grozea, Z.H. Lu, R.N.S. Sodhi, A.M. Hor, Surface electronic structure of plasma-treated indium tin oxides, Applied Physics Letter 78 (2001)2595–2597.

DOI: 10.1063/1.1367897

Google Scholar

[3] G. Liu, J.B. Kerr, S. Johnson, Dark spot formation relative to ITO surface roughness for polyfluorene devices, Synthetic Metals 144 (2004)1–6.

DOI: 10.1016/j.synthmet.2004.01.011

Google Scholar

[4] H. Ohta, M. Orita, M. Hirano, H. Hosono, Surface morphology and crystal quality of low resistive indium tin oxide grown on yittriastabilized zirconia, Journal of Applied Physics 91 (2002) 3547–3550.

DOI: 10.1063/1.1448873

Google Scholar

[5] Y. Leterrier, L. Medico, F. Demarco, J.A.E. Manson, U. Betz, M.F. Escola, Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays, Thin Sol Films 460 (2004) 156–166.

DOI: 10.1016/j.tsf.2004.01.052

Google Scholar

[6] T.P. Nguyen, P. Le Rendu, P.D. Long, S.A. De Vos, Chemical and thermal treatment of PEDOT: PSS thin films for use in organic light emitting diodes, Surface & Coatings Technology 180 (2004) 646–649.

DOI: 10.1016/j.surfcoat.2003.10.110

Google Scholar

[7] T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, Printable anodes for flexible organic solar cell modules, Thin Sol Films 451 (2004) 22–25.

DOI: 10.1016/j.tsf.2003.11.038

Google Scholar

[8] S.A. Carter, J.C. Scott P.J. Brock, Enhanced luminance in polymer composite light emitting devices, Applied Physics Letter 71 (1997) 1145–1147.

DOI: 10.1063/1.119848

Google Scholar

[9] B.W. Xiao, Y.F. Shang, M. Meng, C.N. Li, Enhancement of hole injection with an ultra-thin Ag2O modified anode in organic light emitting diodes, Microelectronics Journal 36 (2005) 105–108.

DOI: 10.1016/j.mejo.2004.11.006

Google Scholar

[10] F.S. Li, Z.J. Chen, C.L. Liu, Q.H. Gong, Improvement in performance of organic light-emitting diodes by adjusting charge-carrier mobility in organic/inorganic hybrid hole transporting layer, Chemical Physics Letters 412 (2005) 331–335.

DOI: 10.1016/j.cplett.2005.07.011

Google Scholar

[11] G.F. Wang, X.M. Tao, R.X. Wang, Fabrication and characterization of OLEDs using PEDOT: PSS and MWCNT nanocomposites, Composites Science and Technology 68 (2008) 2837–2841.

DOI: 10.1016/j.compscitech.2007.11.004

Google Scholar

[12] C.J. Chiang, S. Bull, C. Winscom, A. Monkman, A nano-indentation study of the reduced elastic modulus of Alq3 and NPB thin-film used in OLED devices, Organic Electronics 11 (2010) 450–455.

DOI: 10.1016/j.orgel.2009.11.026

Google Scholar

[13] K. Suzuki, N. Hashimoto, T. Oyama, J. Shimizu, Y. Akao, H. Kojima, Large scale and low resistance ITO films formed at high deposition rates, Thin Solid Films 226 (1993) 104-109.

DOI: 10.1016/0040-6090(93)90213-9

Google Scholar

[14] D.R. Cairns, R.P. Witte, D.K. Sparacini, S.M. Sachsman, D.C. Paine, G.P. Crawford , R. Newton, Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates, Applied Physics Letters 76 (2000)1425- 1427.

DOI: 10.1063/1.126052

Google Scholar

[15] C. Guillen, J. Herrero, Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates, Thin solid films 480–481 (2005) 129–132.

DOI: 10.1016/j.tsf.2004.11.040

Google Scholar

[16] E.H. Kim, C.W. Yang, J.W. Park, Improving the delamination resistance of indium tin oxide (ITO) coatings on polymeric substrates by O2 plasma surface treatment, Current Applied Physics 10 (2010) S510–S514.

DOI: 10.1016/j.cap.2009.12.028

Google Scholar

[17] I.C. Noyan, J.B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, (1987).

Google Scholar

[18] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, Journal of Applied Crystallography 38 (2005) 1-29.

DOI: 10.1107/s0021889804029516

Google Scholar

[19] J. S. Kim, F. Cacialli, R. Friend, Surface conditioning of indium-tin oxide anodes for organic light-emitting Diodes, Thin Solid Films 445 (2003)358-366.

DOI: 10.1016/s0040-6090(03)01185-4

Google Scholar