Hydrothermal Time Effecting on the Morphology of Hydroxyapatite Templated by L-DOPA

Article Preview

Abstract:

Using Ca(NO3)2·4H2O, (NH4)2HPO4 and ammonia water as the starting raw materials and L-DOAP as template, hydroxyapatite (HAP) crystals were successfully prepared at 180 °C by changing the hydrothermal time. The HAP crystals were characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (FESEM). The XRD patterns indicate that increasing hydrothermal time is helpful to improve the purity of the product and enhance crystallinity of HAP crystal. The FTIR analysis shows that the carbonate ions enter into the HAP crystal lattice and the final products are carbonate-containing hydroxyapatite. The FESEM images illustrate that HAP crystal morphology changed to flower-like hierarchical structures and grass blanket-like hierarchical structures when increasing the hydrothermal time to 1 h and 24 h. Therefore, hydrothermal time has a great influence on the morphology of HAP and the possible formation mechanism of HAP samples has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

211-214

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.Y. Zhou, D.P. Wang, W.H. Huang, A.H. Yao, C.H. Xia and X. Duan: Mater. Res. Bull. Vol. 44 (2009), p.259–262.

Google Scholar

[2] H.Q. Zhang, Y.H. Yan, Y.F. Wang and S.P. Li: Mater. Res. Vol. 6 (2002), p.111–115.

Google Scholar

[3] Inés S. Neira, Yury V. Kolenko, Oleg I. Lebedev, Gustaaf Van Tendeloo, Himadri S. Gupta and Francisco Guitián: Cryst. Growth Des. Vol. 9 (2009), p.466–474.

Google Scholar

[4] F. Cuisinier, C. Robinson: Medical and Clinical Aspects, M. Epple, E. Baeuerlein, ed., The structure of teeth: human enamel crystal structure. In Handbook of Biomineralization, edited by J.A. Kent, Wiley-VCH, Weinheim. (2007), p.177–182.

DOI: 10.1002/9783527619443.ch56

Google Scholar

[5] K.L. Lin, J. Chang, Y.J. Zhu, W. Wu, G.F. Cheng and Y. Zeng: Cryst. Growth Des. Vol. 9 (2009), p.177–181.

Google Scholar

[6] C. Qi, Y. J. Zhu, B. Q. Lu, X. Y. Zhao, J. Zhao, F. Chen and J. Wu: Chem. Eur. J. Vol. 19 (2013), p.5332–5341.

Google Scholar

[7] C. Qi, Y. J. Zhu, B. Q. Lu, B. Q. Lu, X. Y. Zhao, J. Zhao and F. Chen, J. Mater: Chem. Vol. 22 (2012), p.22642–22650.

Google Scholar

[8] X. G. Liu, K. L. Lin, R. Qian, L. Chen, S. J. Zhuo, and J. Chang: Chem. Eur. J. Vol. 18 (2012), p.5519–5523.

Google Scholar

[9] S. Koutsopoulos: J. Biomed. Mater. Res. Vol. 62 (2002), p.600–612.

Google Scholar

[10] R. N. Panda, M. F. Hsieh, R. J. Chung and T. S. Chin: J. Phys. Chem. Solids. Vol. 64 (2003), p.193–199.

Google Scholar

[11] B. O. Fowler: Inorg. Chem. Vol. 13 (1974), p.194–207.

Google Scholar

[12] Q. J. He, Z. L. Huang, Y. Liu, W. Chen and T. Xu: Mater. Lett. Vol. 61 (2007), p.141–143.

Google Scholar

[13] J. Andersson, S. Areva, B. Spliethoff and M. Lindén: Biomaterials. Vol. 26 (2005), p.6827–6835.

DOI: 10.1016/j.biomaterials.2005.05.002

Google Scholar

[14] F. Yao, J. P. LeGeros and R. Z. LeGeros: Acta Biomater. Vol. 5 (2009), p.2169–2177.

Google Scholar

[15] R. Kumar, K. H. Prakash, P. Cheang and K. A. Khor: Langmuir. Vol. 20 (2004), p.5196–5200.

Google Scholar