[1]
Zhenyu Wang, Xiaoyan Xie, Jian Zhao, Xiaoyun Liu, Wenqiang Feng, Jason C. White, Baoshan Xing. Xylem- and Phloem- Based Transport of CuO Nanoparticles in Maize(Zea mays L. ) Environ. Sci. Technol. 2012, 46(8), pp.4434-4441.
DOI: 10.1021/es204212z
Google Scholar
[2]
Daohui Lin, Baoshan Xing. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution 150(2007) 243-250.
DOI: 10.1016/j.envpol.2007.01.016
Google Scholar
[3]
Daohui Lin, Baoshan Xing. Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol. 2008, 42, 5580-5585.
DOI: 10.1021/es800422x
Google Scholar
[4]
Christian O. Dimkpa, Joan E. Mclean, Nicole Martineau et al. Silver Nanoparticles Disrupt Wheat( Triticum aestivum L. ) Growth in a Sand Matrix. Environ. Sci. Technol, 2013, 47(2), pp.1082-1090.
DOI: 10.1021/es302973y
Google Scholar
[5]
John H. Priester, Yuan Ge, Randall E. Mielke et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS, 2012 vol. 109 no. 37 E2451-E2456.
Google Scholar
[6]
R. Pereira, T. A. P. Rocha-Santos, F. E. Antunes et al. Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: The role of ageing. Journal of Hazardous Materials, (194) 2011, 345-354.
DOI: 10.1016/j.jhazmat.2011.07.112
Google Scholar
[7]
Izabela Josko, Patryk Oleszczuk. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere, 92(2013) 91-99.
DOI: 10.1016/j.chemosphere.2013.02.048
Google Scholar
[8]
Melissa A. Maurer-Jones, Ian L. Gunsolus, Catherine J. Murphy et al. Toxicity of Engineered Nanoparticles in the Environment. Analytical chemistry, 2013, 85(6), pp.3036-3049.
DOI: 10.1021/ac303636s
Google Scholar