The Application of PCR-DGGE Technique in Sheep Intestinal Microbial Diversity Research

Article Preview

Abstract:

To identify the intestinal microflora diversity of transgenic sheep and non-transgenic one with overexpression of foreign antiviral gene (VP1 & SB-SW), DNA of total bacteria were extracted from 16 sheep fecal samples (4 non-transgenic sheep, 6 VP1 transgenic sheep and 6 SB-SW transgenic sheep). And then PCR amplification with bacterial universal primers of V3 variable region of 16S rRNA were taken to get the fingerprint profile by denaturing gradient gel electrophoresis (DGGE) technology. The results showed that the DGGE profiles of the 16 fecal samples were highly polymorphic. The number of DGGE bands, considered indicative of the total species richness, did not vary predictably among the three different samples. The DNA sequences were analyzed and the dominant bacteria in sheep fecal were found to be Bacteroides, Clostridium, and Ruminococcus. Specially, non-transgenic sheep had more Alistipes finegoldii and Clostridium lentocellum, transgenic sheep with VP1 had more Clostridium drakei and Clostridium populeti and transgenic sheep with SB-SW had more Barnesiella intestinihominis and Clostridium ljungdahlii. So the PCR-DGGE technique can be applied to evaluate genetically modified (GM) animal potential risks to the environment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 884-885)

Pages:

540-543

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.C. Pedersen and N.B. Hendriksen: Biology and Fertility of Soils, Vol. 16 (1993), p.227.

Google Scholar

[2] A. Suau, R. Bonnet, M. Sutren, J.J. Goddon, G.R. Gibson, M.D. Collins and J. Dore: Appl. Environ. Microbiol, Vol. 65 (1999), p.4799.

Google Scholar

[3] E.G. Zoetendal, A.D.L. Akkermans andW.M. De vos: Environ. Microbiol, Vol. 64 (1998), p.3854.

Google Scholar

[4] W.A. Merlin, A.S. Dennis and H.N. Cindy: Nutrition Journal, Vol 9 (2010), p.1475.

Google Scholar

[5] F. Guarner and J.R. Malagelada: The Lancet Vol. 361 (2003), p.512.

Google Scholar

[6] M.J. Nicholsona, C.S. McSweeneyc, R.I. Mackied , J.L. Brookmana and M.K. Theodorou: Anaerobe, Vol. 16 (2010), p.66.

Google Scholar

[7] M. Alexandra, T. Marta, H. Isabel, D. Joana, F. Pedro and C. Antonio: Microbiological Research, Vol. 164 (2009), p.560.

Google Scholar

[8] M. Zhou, H.S. Emma and L.L. Guan: Appl. Environ. Microbiol, Vol. 76 (2010), p.3776.

Google Scholar

[9] A.M.O. Leite, B. Mayoa, C.T.C.C. Rachid, R.S. Peixoto, J.T. Silva, V.M.F. Paschoalin and S. Delgado: Food Microbiology, Vol. 3 (2012), p.215.

Google Scholar

[10] G. Muyzer, E.C. Waal and A.G. Uitterlinden: Appl. Environ. Microbiol, Vol. 59 (1993), p.695.

Google Scholar

[11] T. Matsuki, K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu and R. Tanaka: Appl. Environ. Microbiol, Vol. 68 (2002), p.5445.

DOI: 10.1128/aem.68.11.5445-5451.2002

Google Scholar

[12] W. Hashimoto, K. Momma, H.J. Yoon, S. Ozawa, Y. Ohkawa, T. Ishige, M. Kito, S. Utsumi and K. Murata: Biosci. Biotechnol. Biochem, Vol. 63 (1999), p. (1942).

DOI: 10.1271/bbb.63.1942

Google Scholar

[13] K. Momma, W. Hashimoto, H.J. Yoon, S. Ozawa, Y. Fukuda, S. Kawai, F. Takaiwa, S. Utsumi and Muratak: Biosci. Biotechnol. Biochem, Vol. 64 (2000), p.1881.

Google Scholar

[14] S.G. Fischer and L.S. Lerman: Proc. Natl. Acad. Sci. U.S.A., Vol. 80 (1983), p.1579.

Google Scholar

[15] L.S. Lerman, S.G. Fischer, I. Hurley, K. Silverstein and N. Lumelsky: Annu. Rev. Biophys. Bioeng., Vol. 13(1984), p.399.

DOI: 10.1146/annurev.bb.13.060184.002151

Google Scholar

[16] B. Deng, C.H. Shen, X.H. Shan, Z.H. Ao, J.S. Zhao, X.J. and Zh. Huang: J. Inst. Brew., Vol. 118 (2012), p.120.

Google Scholar