Characterization on the Microstructures and Optical Performances of TiO2 Doped with Transition Metals

Article Preview

Abstract:

The structures and optical performances of TiO2 doped with 4th periodic transition metal ions were investigated in this paper. The characterization results of X-ray photoelectron spectroscopy and X-ray diffraction showed that the transition metal ions existed in oxidative states, and composites formed because of the reaction between doped metal ions and TiO2. The absorption spectroscopy of TiO2 doped with zinc was mainly in ultraviolet region, close to that of the pure TiO2. While for TiO2 doped with other transition metal ions including V, Cr, Mn, Fe, Co, Ni and Cu ions, the absorption spectroscopies covered ultraviolet region and visible light region, much broader than that of the pure TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

388-394

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.B. Song , G.W. Zhou, C.F. Wang, X.J. Jiang, C.C. Wu, T.D. Li, Synthesis and photocatalytic activity of nanocrystalline TiO2 co-doped with nitrogen and cobalt(II) [J]. Research on Chemical Intermediates, 2013, 39(2): 747-758.

DOI: 10.1007/s11164-012-0594-x

Google Scholar

[2] K. Kikoin, V. Fleurov, On the nature of ferromagnetism in non-stoichiometric TiO2 doped with transition metals[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2097-(2098).

DOI: 10.1016/j.jmmm.2006.10.792

Google Scholar

[3] Y.L. Shang, Y.L. Jia, F.H. Liao, J.R. Li, M.X. Li, J. Wang, S.H. Zhang, Preparation, microstructure and electrorheological property of nano-sized TiO2 particle materials doped with metal oxides, Journal of Materials Science[J]. 2007, 42(8): 2586-2590.

DOI: 10.1007/s10853-006-1336-5

Google Scholar

[4] X.H. Liu, D. Meng, H.Y. Wang, Y. Deng, Studies on the structures and performances of Fe/TiO2 photocatalyst[J]. Computers and Applied Chemistry, 2012, 29(8): 913-917(In Chinese).

Google Scholar

[5] X.H. Liu, X.B. He, Y.B. Fu, Effects of doping cobalt on the structures and performances of TiO2 photocatalyst, Acta Chimica Sinica[J]. 2008, 66(14): 1725-1730(In Chinese).

Google Scholar

[6] X.H. Liu, Y.S. Xu, Z.J. Zhong, Y.B. Fu, Y. Deng, Preparation of Zn/TiO2 Powder and its Photocatalytic Performance for Oxidation of P-Nitrophenol, Nuclear Science and Techniques, 2007, 18(1): 59-64.

DOI: 10.1016/s1001-8042(07)60020-7

Google Scholar

[7] B. Younes, K. Mohamed, Z. Mahfoud, B.V. François, Titania-supported cobalt and cobalt–phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation[J]. Journal of Catalysis, 2001, 202(1): 118-128.

DOI: 10.1006/jcat.2001.3262

Google Scholar

[8] C.S. Mei, S.H. Zhong, X.F. Xiao, Structure, photo absorption performance and catalytic properties on Cu/V2O5-TiO2 [J]. Journal of functional materials, 2005, 36(2): 256-259(In Chinese).

Google Scholar

[9] S. Klosek, D. Raftery, Visible Light Driven V-Doped TiO2 photocatalyst and its photooxidation of ethanol[J]. J. Phys. Chem. B 2001, 105, 2815-2819.

DOI: 10.1021/jp004295e

Google Scholar

[10] N. Murakami, T. Chiyoya, T. Tsubota, T. Ohno, Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength[J]. Applied Catalysis A: General, 2008, 348 (1): 148–152.

DOI: 10.1016/j.apcata.2008.06.040

Google Scholar

[11] S.J. Li, Z.C. Ma, L. Wang, J.Z. Liu, Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange [J]. Science in China Series B: Chemistry, 2008, 51(2): 179-185.

DOI: 10.1007/s11426-007-0100-2

Google Scholar

[12] G.W. Zhou, Y.S. Kang, T.Z. Li, G.Y. Xu, Sol-gel preparation and spectroscopic study of the pyrophanite MnTiO3 nanoparticles[J]. Science in China Series B: Chemistry, 2005, 48 (3): 210-215.

DOI: 10.1360/04yb0034

Google Scholar

[13] D.S. Gineley, M.A. Butler, The photoelectrolysis of water using iron titanate anodes[J]. J. Appl. Phys., 1977, 48(5): 2019-(2021).

Google Scholar

[14] Y.J. Lin, Y.H. Chang, W.D. Yang, B.S. Tsai, Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method[J]. Journal of Non-Crystalline Solids, 2006, 352: 789–794.

DOI: 10.1016/j.jnoncrysol.2006.02.001

Google Scholar

[15] M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light[J]. Journal of Colloid and Interface Science, 2000, 224(1): 202-204.

DOI: 10.1006/jcis.1999.6694

Google Scholar

[16] R.S. Singh, T.H. Ansari, R.A. Singh, B.M. Wanklyn, Electrical conduction in NiTiO3 single crystals [J]. Mater. Chem. Phys., 1995, 40(3): 173~177.

DOI: 10.1016/0254-0584(95)01478-0

Google Scholar

[17] D.J. Wang, L. Guo, D.S. Li, F. Fu, W.L. Wang, H.T. Yan, Study on spectroscopic properties of CuO nanoparticles[J]. Spectroscopy and Spectral Analysis, 2008, 28(4): 788-792(In Chinese).

Google Scholar

[18] D. Li, H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155 (1-3) : 171-178.

DOI: 10.1016/s1010-6030(02)00371-4

Google Scholar

[19] K.N. Song, X.P. Han, G.S. Shao, Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study[J]. Journal of Alloys and Compounds, 2013, 551: 118-124.

DOI: 10.1016/j.jallcom.2012.09.077

Google Scholar