Dynamic Strain - Induced Boundary Migration during Dynamic Recovery at a High Temperature Deformation with a Lower Strain Rate

Article Preview

Abstract:

Conventional hot compression deformation and water quenching experiments were applied to investigate the evolution of austenite grain structures before the initiation of dynamic recrystallization. The experimental results reveal an interesting phenomenon that dynamic strain induced boundary migration can lower dislocation density and coarsen austenite grains. The results show that dynamic recovery is not the only way to decrease dislocation density, the mechanism of which for dynamic recovery is related to dislocations climb and annihilation, resulting in the formation of sub-grains and regular sub-boundaries. However, the mechanism of decreasing dislocation density for dynamic strain induced boundary migration is different from dynamic recovery. Therefore, dynamic strain induced boundary migration should be another softening mechanism before the initiation of dynamic recrystallization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

395-399

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Mostafaei and M. Kazeminezhad: Mater. Sci. Eng., 544A(2012), 88.

Google Scholar

[2] H. Yamagata: Acta Metall. Mater., 43(1995), 723.

Google Scholar

[3] E. Brünger, X. Wang and G. Gottstein: Scripta Mater., 38(1998), 1843.

Google Scholar

[4] M. Zhou and M.P. Clode: Mech. Mater., 27(1998), 63.

Google Scholar

[5] E. Nes, K. Marthinsen and Y. Brechet: Scripta Mater., 47(2002), 607.

Google Scholar

[6] L. Kubin and T. Hoc, B. Devincre: Atca Mater., 57(2009), 2567.

Google Scholar

[7] C.S. Shim, C. García de Andrés, M.J. Bartolomé, C. Capdevila, D. San Martín, F.G. Caballero and V. López: Mater. Charact., 46(2001), 389.

Google Scholar

[8] E.I. Poliak and J.J. Jonas: Acta Mater., 44(1996), 127.

Google Scholar

[9] E.I. Poliak and J.J. Jonas: ISIJ Int., 43(2003), 684.

Google Scholar

[10] A.I. Fernández, P. Uranga, B. López and J.M. Rodriguez-Ibabe: Mater. Sci. Eng., 36 A(2003), 367.

Google Scholar

[11] G.R. Stewart, J.J. Jonas and F. Montheillet: ISIJ Int., 44(2004), 1581.

Google Scholar

[12] A. Najafizadeh and J.J. Jonas: ISIJ Int., 46(2006), 1679.

Google Scholar

[13] S.J. Lee and Y.K. Lee: Mater. Des., 29(2008), 1840.

Google Scholar

[14] M. Enomoto, C.L. White and H.I. Aaronson: Metall. Trans., 19A(1988), 1807.

Google Scholar

[15] J.K. Chen, R. A. Vandermeer and W.T. Reynolds: Metall. Mater. Trans., 25A(1994), 1367.

Google Scholar

[16] H. Ohtsuka, G. Ghosh and K. Nagai: ISIJ Int., 37(1997), 296.

Google Scholar

[17] S. Roy, D. Chakrabarti and G.K. Dey: Metall. Mater. Trans., 44A(2013), 717.

Google Scholar

[18] M. Arribas, B. López and J.M. Rodriguez-Ibabe: Mater. Sci. Eng., 485A(2008), 383.

Google Scholar

[19] A. Momeni, K. Dehghani and G.R. Ebrahimi: J. Alloy Compd., 509(2011) 9387.

Google Scholar

[20] H. Beladi, P. Cizek and P.D. Hodgson: Acta Mater., 59(2011), 1482.

Google Scholar