[1]
P. Lequeu, P. Lassince, T. Warner, and G.M. Raynaud. Engineering for the future: weight saving and cost reduction initiative. Aircraft Engr Aerospace Tech. 73 (2001) 147-158.
DOI: 10.1108/00022660110386663
Google Scholar
[2]
Z.D. Huda, E. Prasetyo. Materials selection in design of structures and engines of supersonic aircrafts: A review. Materials and Design 46 (2013) 552-560.
DOI: 10.1016/j.matdes.2012.10.001
Google Scholar
[3]
S.Y. Chen, K.H. Chen, G.S. Peng, X. Liang, X.H. Chen. Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy. Trans. Nonferrous Met. Soc. China 22 (2012) 47-52.
DOI: 10.1016/s1003-6326(11)61138-2
Google Scholar
[4]
J.S. Robinson, S. Hossain, C.E. Truman, A.M. Paradowska, D.J. Hughes, R.C. Wimpory, M.E. Fox. Residual stress in 7449 aluminium alloy forgings. Materials Science and Engineering A 527 (2010) 2603-2612.
DOI: 10.1016/j.msea.2009.12.022
Google Scholar
[5]
J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska, R.C. Wimpory. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075. Materials characterization 65 (2012) 73-85.
DOI: 10.1016/j.matchar.2012.01.005
Google Scholar
[6]
A.K. Nallathambi, Y. Kaymak, E. Specht, A. Bertram. Sensitivity of material properties on distortion and residual stresses during metal quenching processes. Journal of Materials Processing Technology 210 (2010) 204-211.
DOI: 10.1016/j.jmatprotec.2009.09.001
Google Scholar
[7]
X. Yang, J. Zhu, Z. Lai, Y. Liu, H.E. Dong, Z. Nong. Finite element analysis of quenching temperature field, residual stress and distortion in A357 aluminum alloy large complicated thin-wall workpieces. Trans. Nonferrous Met. Soc. China 23(2013).
DOI: 10.1016/s1003-6326(13)62657-6
Google Scholar
[8]
C.J. Lammi, D.A. Lados. Numerical predictions and experimental measurements of residual stresses in fatigue crack growth specimens. Engineering Fracture Mechanics 78 (2011) 1114-1124.
DOI: 10.1016/j.engfracmech.2011.01.029
Google Scholar
[9]
K. Mori, Y. Abe, T. Kato. Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting. Journal of Materials Processing Technology 212 (2012) 1900-(1905).
DOI: 10.1016/j.jmatprotec.2012.04.017
Google Scholar
[10]
D.A. Tanner, J.S. Robinson. Modelling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products. Finite Elements in Analysis and Design 39 (2003) 369-386.
DOI: 10.1016/s0168-874x(02)00079-3
Google Scholar
[11]
S. Zhang, Y.X. Wu, H. Gong. A modeling of residual stress in stretched aluminum alloy plate. Journal of Materials Processing Technology 212 (2012) 2463-2473.
DOI: 10.1016/j.jmatprotec.2012.06.019
Google Scholar
[12]
Q.C. Wang. The study of residual stress relief and its evaluation in aviation aluminum alloy parts. In Chinese. Zhejiang University. 2003. 1-136.
Google Scholar
[13]
X.W. Yang, J.C. Zhu, Z.S. Nong, Z.H. Lai, D. He. FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process. Computational Materials Science 69 (2013).
DOI: 10.1016/j.commatsci.2012.11.024
Google Scholar
[14]
G.Y. Lin. The basic research of process technology in high performance 7x75 aluminum alloy thick plate. In Chinese. Central South University. (2006) 1-176.
Google Scholar
[15]
M. Koc, J. Culp, T. Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology 174 (2006) 342-354.
DOI: 10.1016/j.jmatprotec.2006.02.007
Google Scholar