[1]
J. Murray, D. King, Oil's tipping point has passed, Nature 481 (2012) 433-435.
DOI: 10.1038/481433a
Google Scholar
[2]
T.M. Pollock, Weight loss with magnesium alloys, Science 328 (5981) (2010) 986-987.
DOI: 10.1126/science.1182848
Google Scholar
[3]
K.U. Kainer, Magnesium - Alloys and Technology, Wiley-VCH, Cambridge, (2003).
Google Scholar
[4]
S. Begum, D.L. Chen, S. Xu, A.A. Luo, Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy, Mater. Sci. Eng. A 517 (2009) 334-343.
DOI: 10.1016/j.msea.2009.04.051
Google Scholar
[5]
F. Yang, F. Lv, X.M. Yang, S.X. Li, Z.F. Zhang, Q.D. Wang, Enhanced very high cycle fatigue performance of extruded Mg-12Gd-3Y-0. 5Zr magnesium alloy, Mater. Sci. Eng. A 528 (2011) 2231-2238.
DOI: 10.1016/j.msea.2010.12.092
Google Scholar
[6]
S. Begum, D.L. Chen, S. Xu, A.A. Luo, Low cycle fatigue properties of an extruded AZ31 magnesium alloy, Int. J. Fatigue 31 (2009) 726-735.
DOI: 10.1016/j.ijfatigue.2008.03.009
Google Scholar
[7]
S. Begum, D.L. Chen, S. Xu, A.A. Luo, Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy, Metall. Mater. Trans. A 39 (2008) 3014-3026.
DOI: 10.1007/s11661-008-9677-0
Google Scholar
[8]
J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater. 61 (2013) 818-843.
DOI: 10.1016/j.actamat.2012.10.044
Google Scholar
[9]
Y. Yang, Y.B. Liu, S.Y. Qin, Y. Fang, High cycle fatigue properties of die-cast magnesium alloy AZ91D with addition of different concentrations of cerium, J. Rare Earths 24 (2006) 591-595.
DOI: 10.1016/s1002-0721(06)60170-1
Google Scholar
[10]
F.H. Wang, J. Dong, Y.Y. Jiang, W.J. Ding, Cyclic deformation and fatigue of extruded Mg-Gd-Y magnesium alloy, Mater. Sci. Eng. A 561 (2013) 403-410.
DOI: 10.1016/j.msea.2012.10.048
Google Scholar
[11]
L. Wu, Z. Yang, W. Xia, Z. Chen, L. Yang, The cyclic softening and evolution of microstructures for Mg-10Gd-2. 0Y-0. 46Zr alloy under low cycle fatigue at 573K, Mater. Des. 36 (2012) 47-53.
DOI: 10.1016/j.matdes.2011.10.056
Google Scholar
[12]
Z. -K. Peng, X. -M. Zhang, J. -M. Chen, Y. Xiao, H. Jiang, Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium, Mater. Sci. Technol. 21 (2005) 722-726.
DOI: 10.1179/174328405x43153
Google Scholar
[13]
W. Liu, G. Wu, C. Zhai, W. Ding, A.M. Korsunsky, Grain refinement and fatigue strengthening mechanisms in as-extruded Mg-6Zn-0. 5Zr and Mg-10Gd-3Y-0. 5Zr magnesium alloys by shot peening, Int. J. Plasticity 49 (2013) 16-35.
DOI: 10.1016/j.ijplas.2013.02.015
Google Scholar
[14]
S. Suresh, Fatigue of materials, second ed., Cambridge University Press, Cambridge, (1998).
Google Scholar
[15]
J.B. Jordon, J.B. Gibson, M.F. Horstemeyer, H. El Kadiri, J.C. Baird, A.A. Luo, Effect of twinning, slip, and inclusions on the fatigue anisotropy of extrusion-textured AZ61 magnesium alloy, Mater. Sci. Eng. A 528 (2011) 6860-6871.
DOI: 10.1016/j.msea.2011.05.047
Google Scholar