Fatigue of Austenitic High Interstitial Steels - The Role of N and C

Article Preview

Abstract:

In order to increase the strength and maintain the ductility of austenitic steels high Nitrogen austenitic steels (AHNS) emerged of which Ni was substituted by Mn so that up to 1 w% N could be alloyed and kept in solid solution. Cold working was added to gain strength values up to 3000 MPa. Still the endurance limit did not follow this trend. The low stacking fault energy was thought being the main reason for the solely planar slip but it became clear that other near-field effects might govern this behaviour as well. Thus the density of free electrons could be identified as being one for CrMn-steels being mainly influenced by the sum and the ratio of C and N. In order to investigate this strain-controlled fatigue tests are carried out. This contribution presents the results of strain-controlled fatigue tests and discusses them on the basis of SEM-EBSD and TEM investigations in relation to the microstructural characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

403-409

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.B. Miller, Cryogenics, 5 (1965) 320-324.

Google Scholar

[2] K.H. Miska, Mater Eng, 86 (1977) 42-44.

Google Scholar

[3] V.C. Sharma, A. Sharma, P. Ilenikhena, Energy, 13 (1988) 749-754.

Google Scholar

[4] J. Menzel, W. Kirschner, G. Stein, ISIJ International, 36 (1996) 893-900.

Google Scholar

[5] Y.H. Kim, K.Y. Kim, Y.D. Lee, Materials and Manufacturing Processes, 19 (2004) 51-59.

Google Scholar

[6] J.K. Choi, S.G. Lee, Y.H. Park, I.W. Han, J.W. Morris Jr, Rhodes, 2012, pp.29-35.

Google Scholar

[7] M. Talha, C.K. Behera, O.P. Sinha, Materials Science and Engineering C, (2013).

Google Scholar

[8] S. Ganesh Sundara Raman, K.A. Padmanabhan, International Journal of Fatigue, 18 (1996) 71-79.

Google Scholar

[9] V.G. Gavriljuk, A.I. Tyshchenko, V.V. Bliznuk, I.L. Yakovleva, S. Riedner, H. Berns, Steel Research International, 79 (2008) 413-422.

DOI: 10.1002/srin.200806147

Google Scholar

[10] M. Panzenböck, R. Ebner, U. Locker, H. Aigner, H. Pohl, Fatigue and Fracture of Engineering Materials and Structures, 13 (1990) 563-578.

DOI: 10.1111/j.1460-2695.1990.tb00627.x

Google Scholar

[11] V.G. Gavriljuk, H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications., Springer-Verlag, Berlin, Germany, (1999).

Google Scholar

[12] I. Tikhovskiy, PhD-Thesis, Materials Science and Engineering, University of Duisburg-Essen, Duisburg, Germany, 2005 s. a. Fortschr. -Ber. VDI Reihe 5: Grund- und Werkstoffe/Kunststoffe, Nr. 717. VDI Verlag Düsseldorf Germany, ISBN 3-18-371705-0 (2005).

DOI: 10.3940/rina.cfd.2005.11

Google Scholar

[13] I. Tikhovskiy, S. Weiß, A. Fischer, Steel Grips, 2 (2004) 259-263.

Google Scholar

[14] S. Degallaix, G. Degallaix, J. Foct, in: H.D. Solomon, G.R. Halford, L.P. Kaisand, B.N. Leis (Eds. ) ASTM Special Technical Publication, ASTM, Bolton Landing, NY, USA, 1987, pp.798-811.

Google Scholar

[15] S. Koch, R. Büscher, I. Tikhovski, H. Brauer, A. Runiewicz, W. Dudzinski, A. Fischer, Materialwissenschaft und Werkstofftechnik, 33 (2002) 705-715.

DOI: 10.1002/mawe.200290000

Google Scholar

[16] P. Göbbeler, PhD-Thesis, Materials Science and Engineering, University of Essen, Essen, Germany s. a. Fortschr. -Ber. VDI Reihe 5: Grund- und Werkstoffe, Nr. 513. VDI Verlag Düsseldorf Germany ISBN 3-18-351305-6 (1998), (1998).

Google Scholar

[17] A. Fischer, S. Weiss, M.A. Wimmer, Journal of the Mechanical Behavior of Biomedical Materials, 1 (2012) 50-62.

Google Scholar

[18] H. Berns, V.G. Gavriljuk, S. Riedner, A. Tyshchenko, Steel Research International, 78 (2007) 714-719.

DOI: 10.1002/srin.200706274

Google Scholar

[19] V.G. Gavriljuk, O. Razumov, Y. Petrov, I. Surzhenko, H. Berns, Steel Research International, 78 (2007) 720-723.

DOI: 10.1002/srin.200706275

Google Scholar

[20] B.D. Shanina, V.G. Gavriljuk, H. Berns, Steel Research International, 78 (2007) 724-728.

DOI: 10.1002/srin.200706276

Google Scholar

[21] H. Berns, V.G. Gavriljuk, N. Nabiran, Y.N. Petrov, S. Riedner, L.N. Trophimova, Steel Research International, 81 (2010) 299-307.

DOI: 10.1002/srin.200900142

Google Scholar

[22] H. Berns, V. Gavriljuk, S. Riedner, High Interstitial Stainless Austenitic Steels., 1st. ed., Springer, Berlin Heidelberg, Germany, (2013).

DOI: 10.1007/978-3-642-33701-7

Google Scholar

[23] M.A. Schymura, A. Fischer, International Journal of Fatigue, (2014) under review.

Google Scholar

[24] H. Berns, V. Gavriljuk, B. Shanina, Advanced Engineering Materials, 10 (2008) 1083-1093.

Google Scholar

[25] H. Mughrabi, Proceedings of the Riso International Symposium on Metallurgy and Materials Science, Publ by Riso Natl Lab, Roskilde, Den, 1989, pp.191-206.

Google Scholar

[26] S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, UK, (1989).

Google Scholar

[27] R.E. Schramm, R.P. Reed, Metallurgical Transactions A, 6 (1975) 1345-1351.

Google Scholar

[28] L. Remy, Acta Metallurgica, 25 (1977) 173-179.

Google Scholar

[29] C.C. Bampton, I.P. Jones, M.H. Loretto, Acta Metallurgica, 26 (1978) 39-51.

Google Scholar

[30] P.J. Brofman, G.S. Ansell, Metallurgical Transactions A, 9 (1978) 879-880.

Google Scholar

[31] T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Materialia, 58 (2010) 3173-3186.

Google Scholar

[32] S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hanninen, Acta Materialia, 59 (2011) 1068-1076.

DOI: 10.1016/j.actamat.2010.10.037

Google Scholar

[33] L. Mujica, S. Weber, W. Theisen, Materials Science Forum, 706-709 (2012) 2193-2198.

Google Scholar

[34] Z. Wang, Philosophical Magazine, 84 (2004) 351-379.

Google Scholar

[35] V.G. Gavriljuk, B.D. Shanina, H. Berns, Materials Science and Engineering: A, 481-482 (2008) 707-712.

DOI: 10.1016/j.msea.2006.11.186

Google Scholar

[36] H. Berns, V.G. Gavriljuk, Key Engineering Materials, 345-346 (2007) 421-424.

DOI: 10.4028/www.scientific.net/kem.345-346.421

Google Scholar