Effects of Milling Techniques and Calcinations Temperature on the Composite Cathode Powder LSCF-SDC Carbonate

Article Preview

Abstract:

Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-δ-SDC carbonates (LSCF-SDCC) for applications of low temperature solid oxide fuel cell (LTSOFC) were developed. LSCF-SDCC were mixed using high energy ball milling technique via dry and wet milling method followed by calcinations at 700, 750 and 800 °C. The findings reveal that different calcinations temperature and milling techniques gives effects to the composite cathodes powder. Clear peak intensity demonstrate from wet milling technique as confirm via XRD analysis indicates that crystalline structure has been improved. FESEM investigation demonstrate the presence of large particles in the resultant powder resulting from the increased calcination temperature. LSCF-SDCC composite cathodes powder produced via wet milling technique have good fine fraction and demonstrates good crystallite structure to be served as cathode of LTSOFC compared to dry milling technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-328

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ – SDC carbonate composite cathodes for low-temperature solid oxide fuel cells, Materials Chemistry and Physics. 141 (2013) 752-757.

DOI: 10.1016/j.matchemphys.2013.05.071

Google Scholar

[2] E.P. Murray, M.J. Server, S.A. Barnett, Electrochemical performance of (La, Sr)(Co, Fe)O3-(Ce, Gd)O3 composite cathodes, Solid State Ionics. 148 (2002) 27-34.

DOI: 10.1016/s0167-2738(02)00102-9

Google Scholar

[3] Y. Leng, S.H. Chan, Q. Liu, Development of LSCF-GDC composite cathodes for low temperature solid oxide fuel cells with thin film GDC electrolyte, International Journals of Hydrogen Energy. 33 (2008) 3808-3817.

DOI: 10.1016/j.ijhydene.2008.04.034

Google Scholar

[4] J. Raharjo, A. Muchtar, W.R.W. Daud, N. Muhamad, E.H. Majlan, Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cells (SOFC) applications, Key Eng. Mater. 471-472 (2011) 179-184.

DOI: 10.4028/www.scientific.net/kem.471-472.179

Google Scholar

[5] Y. Zhou, D. -B. Xiong, H. Qin, F. Gao, H. Inui, B. Zhu, Int. Journal of Hydrogen Energy.

Google Scholar

[6] N.A. Baharuddin, H.A. Rahman, A. Muchtar, A.B. Sulong, H. Abdullah, Review: Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells, Journal of Zhejiang University. 14(1) (2013).

DOI: 10.1631/jzus.a1200134

Google Scholar

[7] H.A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, Fabrication and characterization of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ – SDC composite cathode, Key Eng. Mater. 471-472 (2011) 268-270.

Google Scholar

[8] J. Raharjo, A. Muchtar, W.R.W. Daud, N. Muhamad, E.H. Majlan, Fabrication of dense composite ceramic electrolyte SDC-(Li/Na)2Co3, Key Eng. Mater. 447-448 (2010) 666-670.

DOI: 10.4028/www.scientific.net/kem.447-448.666

Google Scholar

[9] H.A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, Structure and thermal properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ – SDC carbonate composite cathodes for intermediate-to low-temperature solid oxide fuel cells, Ceramics International. 38 (2012).

DOI: 10.1016/j.ceramint.2011.09.043

Google Scholar

[10] S. Ahmad, M.S.A. Bakar, A. Muchtar, N. Muhamad, H.A. Rahman, The effect of milling speed and calcination temperature towards composite cathode LSCF-SDC carbonate, Advanced Materials Research. 576 (2012) 220-223.

DOI: 10.4028/www.scientific.net/amr.576.220

Google Scholar

[11] M. M Seabaugh and S.L. Swartz, U.S. Patent 7, 595, 127 B2. (2009).

Google Scholar