Hybrid Fluorescent-Magnetic Polymeric Particles for Biomedical Applications

Article Preview

Abstract:

Submicron magnetic polymeric particle (MPP) and/or Janus magnetic polymeric particle (JMPP) were successfully prepared via the miniemulsion polymerization of styrene (St)/acrylic acid (AA) monomers consisting of superparamagnetic iron oxide nanoparticles (IONPs) coated with oleic acid. Since the particle nucleation occurs primarily within the monomer droplet, not only the size of particle could be controlled at the beginning but also its morphology was manipulated by using different types of initiator. The MPPs with homogeneous distribution of IONPs (41%) in P(St-DVB-AA) were obtained with using potassium persulfate (KPS) as initiator and divinyl benzene (DVB) as crosslinking agent. To obtain anisotropic JMPP, an oil-soluble initiator 2,2-azobis (2-isobutyronitrile) was used instead. The controllable phase separation between P(St-AA) and the encapsulated IONPs caused the stable spherical Janus particles containing IOPNs (15%) located on one side of polymer particle. Both MPPs and JMPPs could be easily separated by an external magnet. The MPPs were functionalized with chitosan (CS) acting as spacer and then chemical immobilized with fluorescein isothiocyanate (FITC) to produce fluorescent-MPPs. When applying as imaging device for cancer cells labeling i.e., HeLa, cells, results showed that MPPs/CS-FITC could be located inside cells with low cytotoxicity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-336

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Rahman, A. Elaissari, Multi-stimuli responsive magnetic core-shell particles: synthesis, characterization and specific RNA recognition, J. Colloid Sci. Biotechnol. 1 (2012) 3-15.

DOI: 10.1166/jcsb.2012.1006

Google Scholar

[2] M. O. Avilés, A. D. Ebner, J. A. Ritter, In vitro study of magnetic particle seeding for implant-assisted-magnetic drug targeting: Seed and magnetic drug carrier particle capture. J. Magn. Magn. Mater. 321 (2009) 1586–1590.

DOI: 10.1016/j.jmmm.2009.02.091

Google Scholar

[3] M. Lansalot, M. Sabor, A. Elaissari, C. Pichot, Elaboration of fluorescent and highly magnetic submicronic polymer particles via a stepwise heterocoagulation process. Colloid Polym. Sci. 283 (2005) 1267-1277.

DOI: 10.1007/s00396-005-1334-1

Google Scholar

[4] L. Charoenmark, D. Polpanich, R. Thiramanas, P. Tangboriboonrat, Preparation of superparamagnetic polystyrene-based nanoparticles functionalised by acrylic acid, Macromol. Res. 20 (2012) 590-596.

DOI: 10.1007/s13233-012-0081-7

Google Scholar

[5] C. Kaewsaneha, P. Opaprakasit, D. Polpanich, S. Smanmoo, P. Tangboriboonrat, Immobilization of fluorescein isothiocyanate on magnetic polymericnanoparticle using chitosan as spacer, J. Colloid Interf. Sci. 377 (2012) 145-152.

DOI: 10.1016/j.jcis.2012.03.008

Google Scholar

[6] K. Chen, Y. Zhu, Y. Zhang, L. Li, Y. Lu, X. Guo, Synthesis of magnetic spherical polyelectrolyte brushes, Macromolecules, 44 (2011) 632-639.

DOI: 10.1021/ma102337c

Google Scholar

[7] C. Kaewsaneha, P. Tangboriboonrat, D. Polpanich, M. Eissa, A. Elaissari, Anisotropic Janus magnetic polymeric nanoparticles prepared via miniemulsion polymerization, J. Polym. Sci. Part A. 51 (2013) 4779–4785.

DOI: 10.1002/pola.26902

Google Scholar

[8] V. Holzapfel, M. Lorenz, C.K. Weiss, H. Schrezenmeier, K. Landfester, V. Mailänder, Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process J. Phys.: Condens. Matter 18 (2006).

DOI: 10.1088/0953-8984/18/38/s04

Google Scholar

[9] H. Xie, S. Zhang, S. Li, Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2, Green Chem. 8 (2006) 630–633.

DOI: 10.1039/b517297g

Google Scholar

[10] J. Casanovas, D. Jacquemin, E.A. Perpète, C. Alemán, Fluorescein isothiocyanate: Molecular characterization by theoretical calculations, Chem. Phys. 354 (2008) 155-161.

DOI: 10.1016/j.chemphys.2008.10.008

Google Scholar

[11] K. Landfester, L.P. Ramirez, Encapsulated magnetite particles for biomedical application, J. Phys. Condens. Matter 15 (2003) S1345–S1361.

DOI: 10.1088/0953-8984/15/15/304

Google Scholar

[12] C. Kaewsaneha, P. Tangboriboonrat, D. Polpanich, M. Eissa, A. Elaissari, Facile method for preparation of anisotropic submicron magnetic Janus particles using miniemulsion, J. Colloid Interf. Sci. 409 (2013) 66–71.

DOI: 10.1016/j.jcis.2013.07.067

Google Scholar

[13] Y. -D. Luo, C. -A. Dai, W. -Y. Chiu, Polystyrene/Fe3O4 composite latex via miniemulsion polymerization-nucleation mechanism and morphology. J. Polym. Sci. Part A. 46 (2008) 1014-1024.

DOI: 10.1002/pola.22444

Google Scholar

[14] A. Elaissari, Magnetic latex particles in nanobiotechnologies for biomedical diagnostic applications: State of the art, Macromol. Symp. 281 (2009) 14-19.

DOI: 10.1002/masy.200950702

Google Scholar

[15] N. Chekina, D. Horák, P. Jendelová, M. Trchová, M.J. Beneš, M. Hruby´, V. Herynek, K. Turnovcová, E. Syková, Fluorescent magnetic nanoparticles for biomedical applications, J. Mater. Chem. 21 (2011) 7630-7639.

DOI: 10.1039/c1jm10621j

Google Scholar