Lithium Mobility in Lithium-Montmorillonite/Poly(ethylene oxide) Electrolytes: A Molecular Dynamics Simulation Study

Article Preview

Abstract:

Classical molecular dynamic simulation was performed on electrolyte system of lithium-montmorillonite/poly(ethylene oxide) to investigate mobility behavior of lithium once it had been absorbed into montmorillonites octahedral site. Temperature of 100, 200, and 300 K were chosen for measurement using canonical ensemble. Phase space information were proceeded to do analysis on diffusion coefficients of lithium atoms and radial distribution function graphs of lithium pair. Results showed a solid-like behavior of lithium indicating its high stability inside montmorillonites octahedral site. Very little movement was observed with slight increase over temperature rise.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

834-837

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Fauteux, A. Massucco, M. McLin, M. Van Buren, and J. Shi, Lithium polymer electrolyte rechargeable batteries, Electrochemica Acta Vol. 40 No. 13-14 (1995) 2185-2190.

DOI: 10.1016/0013-4686(95)00161-7

Google Scholar

[2] A. Aabloo and J. Thomas, Molecular dynamics simulation of lithium ion mobility in a PEO surface, Solid State Ionics 143 (2001) 83-87.

DOI: 10.1016/s0167-2738(01)00836-0

Google Scholar

[3] F. Croce, S. Sacchetti, and B. Scrosati, Advanced, lithium batteries based on high-performance composite polymer electrolytes, Journal of Power Source 162 (2006) 685.

DOI: 10.1016/j.jpowsour.2006.07.038

Google Scholar

[4] V. Kuppa and E. Manias, Computer simulation of PEO/layered-silicate nanocomposites: 2. Lithium dynamics in PEO/Li+ montmorillonite intercalates, Chem. Mater. 14 (2002) 2171-2175.

DOI: 10.1021/cm011275w

Google Scholar

[5] T. D. K. Wungu, S. M. Aspera, M. David, H. K. Dipojono, H. Nakanishi, and H. Kasai, Absorption of lithium in montmorillonite: a density functional theory (DFT) study, Journal of Nanoscience and Nanotechnology 11 (2011) 1-9.

DOI: 10.1166/jnn.2011.3913

Google Scholar

[6] V.V. Tanuwijaya, T.A. Nugraha, Nugraha, H.K. Dipojono, S. de Leeu, and J. Heringa, On the equilibration of lithium-montmorillonite/poly(ethylene oxide) system: molecular dynamics simulation study, Proceeding of International Conference on Physics (2012).

DOI: 10.4028/www.scientific.net/amr.893.834

Google Scholar

[7] B. J. Teppen, K. Rasmussen, P. M. Bertsch, D. M. Miller, and L. Schafer, J. Phys. Chem. B 101 (1997) 1579-1587.

Google Scholar

[8] S. Neyertz, D. Brown, and J.O. Thomas, Molecular dynamics simulation of crystalline poly-(ethylene oxide), J. Chem. Phys. 101 (1994) 11.

Google Scholar

[9] S. Neyertz and D. Brown, A computer simulation study of the chain configurations in poly(ethylene oxide)-homologue melts, J. Chem. Phys. 102 (1995) 24.

DOI: 10.1063/1.468791

Google Scholar

[10] M. Chavez´-Paz, ´ K. Van Workum, L. de Pablo, and J.J. de Pablo, J. Chem. Phys. 114 (2001) 1405.

Google Scholar