Estimation of Apparent Elastic Moduli of Trabecular Bone Considering Biological Apatite (BAp) Crystallite Orientation in Tissue Modulus

Article Preview

Abstract:

This study presents a prediction of apparent elastic moduli of vertebral trabecular bone using the homogenization method. A micro-finite element (FE) model of trabecular bone was reconstructed from a sequential of cross-section micro-CT image by converting bone voxels to brick elements. Eight regions of interest (ROIs) were extracted from two lumbar vertebra bone specimens of healthy and osteoporotic. The homogenization method and finite element method was employed to analyze the microscopic trabecular bone. Bone tissue property was modeled as orthotropy material considering the biological apatite (BAp) crystallite orientation. This research focuses on the effect of morphological difference between healthy and osteoporotic bones to the apparent elastic moduli. The change of degree of anisotropy was also discussed. Comparison of the calculated Youngs moduli in vertical axis with Keyak et al.s experimental result showed good agreement and proved the reliability of the numerical model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-171

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. van Rietbergen, S. Majumdar, W. Pistoia, D.C. Newitt, M. Kothari, A. Laib, P. Rugsegger, Technol. Health Care Vol. 6 (1998), p.413.

Google Scholar

[2] Y. Chevalier, D. Pahr, H. Allmer, M. Charlebois, P. Zysset, J. Biomech. Vol. 40 (2007), p.3333.

Google Scholar

[3] J.C. van der Linden, D.H. Birkenhäger-Frenkel, J.A.N. Verhaar, H. Weinans, J. Biomech. Vol. 34 (2001), p.1573.

Google Scholar

[4] T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa, Y. Umakoshi, Bone Vol. 31 (2002), p.479.

DOI: 10.1016/s8756-3282(02)00850-5

Google Scholar

[5] S. Miyabe, T. Nakano, T. Ishimoto, N. Takano, T. Adachi, H. Iwaki, A. Kobayashi, K. Takaoka, Y. Umakoshi, Mater. Trans. Vol. 48 (2007), p.343.

DOI: 10.2320/matertrans.48.343

Google Scholar

[6] J.H. Keyak, I.Y. Lee, H.B. Skinner, J. Biomed. Mater. Res. Vol. 28 (1994), p.1329.

Google Scholar

[7] J. Guedes, N. Kikuchi, Comput. Meth. Appl. Mech. Eng. Vol. 83 (1990), p.143.

Google Scholar

[8] E. Sánchez-Palencia, Non-homogeneous Media and Vibration Theory, Springer-Verlag, (1980).

Google Scholar

[9] N. Takano, K. Fukasawa, K. Nishiyabu, Int. J. Mech. Sci. Vol. 52 (2010), p.229.

Google Scholar

[10] S.J. Hollister, D.P. Fyhrie, K.J. Jepsen, S.A. Goldstein, J. Biomech. Vol. 24 (1991), p.825.

Google Scholar