Full Exploitation of Lightweight Design Potentials by Generating Pronounced Compressive Residual Stress Fields with Hydraulic Autofrettage

Article Preview

Abstract:

Internally pressurized components in hydraulic systems are subjected to high mechanical stresses. In case of dynamic pressure profiles this may lead to fatigue and hence a limited lifetime. This is particularly the case for fuel injection systems in combustion engines. Components of diesel injection systems in automobiles are popular examples for these demands. They have to withstand pressures of 2,200 bar and higher for at least 250,000 km. The increasing usage of high-strength materials and higher wall thicknesses will lead to a dead end as the weight and the complex manufacturing will tie up costs and resources. Autofrettage is a manufacturing process with high potential for the lightweight design of highly stressed hydraulic components. By considering the same wall thickness and applying optimal parameters, the fatigue strength may be increased by a factor of 3.5. If transferred to lightweight concepts wall thickness reductions as well as cost and resource savings by more than 45 % may be realized. However, from the manufacturing perspective the Autofrettage process poses some challenges. This paper presents results from Finite Element simulations and experiments and discusses the interaction between manufacturing processes with respect to residual stresses and deformations. The scientific findings may be used to tear down barriers in the application of Autofrettage and to optimize process chain layouts. It also serves to make a significant contribution to weight reduction in car manufacturing and other high performance hydraulic applications. Abbreviations: AF : Autofrettage; AFM : Abrasive Flow Machining; ECM : Electro-Chemical Machining; FEA : Finite Element Analysis; K-ratio : outer to inner radius ratio; L = length of the cylinder (mm); pAF : Autofrettage pressure (bar); pWP : working pressure (bar); piY : pressure to initiate yielding at the bore (bar); Ra : roughness average (μm); Rz : average maximum height of the roughness profile (μm); RPM : Revolutions Per Minute (1/min.); ri : inner radius (mm); ro : outer radius (mm); ρ : density (kg/dm3); σVM : von Mises equivalent stress (MPa); σy : yield stress (MPa); σt : tensile stress (MPa); σY : yield strength (MPa); SF : Safety Factor;

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-27

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kendall DP (2000) A Short History of High Pressure Technology from Bridgman to Division 3. Journal of Pressure Vessel Technology 122: 229-233.

DOI: 10.1115/1.556178

Google Scholar

[2] Klocke F, König W (2007) Fertigungsverfahren 3 – Abtragen, Generieren und Lasermaterialbearbeitung. 4th edn., Springer Verlag Berlin Heidelberg.

Google Scholar

[3] Gruden D (2008) Umweltauswirkungen des Dieselmotors. In: Umweltschutz in der Automobilindustrie. Vieweg + Teubner Verlag Wiesbaden.

DOI: 10.1007/978-3-8348-9526-4_5

Google Scholar

[4] Seeger T, Greuling S, et al (2001) Autofrettage II – Dauerfestigkeitssteigerung durch Autofrettage II. Forschungsvereinigung Verbrennungskraftmaschinen, Vorhaben Nr. 671.

Google Scholar

[5] Diemar A, Linne K, et al. (2003) Einsatzhärten und Autofrettage – Dauerfestigkeitssteigerung einsatzgehärteter Hochdruckbauteile durch Autofrettage. Forschungsvereinigung Verbrennungskraftmaschinen, Vorhaben Nr. 784.

Google Scholar

[6] Brinksmeier E, Cammett JT et al (1982) Residual Stresses - Measurement and Causes in Machining Processes. Annals of the CIRP 31/2: 491-510.

DOI: 10.1016/s0007-8506(07)60172-3

Google Scholar

[7] Bähre D, Brünnet H (2011) Simulation of Removing Autofrettage-induced Residual Stress Loaded Layers by Finite Element Analysis. Procedia Engineering 19: 9-15.

DOI: 10.1016/j.proeng.2011.11.072

Google Scholar

[8] Brünnet H, Yi I, Bähre D (2011) Modeling of Residual Stresses and Shape Deviations along the Process Chain of Autofrettaged Components. Journal of Materials Science and Engineering A 1/7: 915-936.

DOI: 10.4028/www.scientific.net/msf.768-769.79

Google Scholar

[9] Gibson MC (2008) Determination of Residual Stress Distributions in Autofrettaged Thick-Walled Cylinders. Dissertation, Cranfield University.

Google Scholar

[10] Lechmann, M (2007) Entwicklung eines schwingbruchmechanischen Auslegungskonzeptes für innendruckbeanspruchte Bauteile mit ausgeprägten Druckeigenspannungsfeldern. Dissertation, Universität Stuttgart.

Google Scholar

[11] Mischorr G (1990) Zur Ermüdung dickwandiger Rohre aus weichmartensitischen und halbaustenitischen Chrom-Nickel-Stählen durch schwellenden Innendruck. Dissertation, Universität Erlangen-Nürnberg.

Google Scholar

[12] Seeger T, Schön M et al (1994) Autofrettage I – Dauerfestigkeitssteigerung durch Autofrettage. Forschungsvereinigung Verbrennungskraftmaschinen, Vorhaben Nr. 478.

Google Scholar

[13] Löhe D, Lang KH, et al (2002) Residual Stresses and Fatigue Behavior. Handbook of Residual Stress and Deformation of Steel, ASM International, Materials Park, Ohio.

Google Scholar

[14] Parker AP, Troiano E, et al (2003) Characterization of Steels Using a Revised Kinematic Hardening Model Incorporating Bauschinger Effect. J. of Pressure Vessel Technology 125: 277-281.

DOI: 10.1115/1.1593071

Google Scholar

[15] Jahed H, Ghanbari G (2003) Actual Unloading Behavior and Its Significance on Residual Stress in Machined Autofrettaged Tubes. J. Pressure Vessel Technolog 125/3: 321-325.

DOI: 10.1115/1.1593070

Google Scholar

[16] Huang XP (2005) A General Autofrettage Model of a Thick-walled Cylinder based on Tensile-compressive Stress-strain Curve of a Material. J. Strain Analysis 40/6: 599-607.

DOI: 10.1243/030932405x16070

Google Scholar

[17] Macherauch E (1987) Praktikum in Werkstoffkunde. Vieweg Verlag.

Google Scholar

[18] Bauschinger J (1886) Über die Veränderung der Elastizitätsgrenze und der Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwärmen und Abkühlen und durch oftmals wiederholte Beanspruchung. Mitt. Mech. -Techn. lab. K. TH München 13: 266-274.

DOI: 10.1007/978-3-662-40295-5_1

Google Scholar

[19] Zhu R, Yang Y (1998) Autofrettage of thick cylinders. International Journal of Pressure Vessels and Piping 75: 443-446.

DOI: 10.1016/s0308-0161(98)00030-1

Google Scholar

[20] Ayob A, Elbasheer MK (2007) Optimum Autofrettage Pressure in Thick Cylinders. Jurnal Mekanikal 24: 1-14.

Google Scholar

[21] Schön M (1995) Eigenspannungs- und Dauerfestigkeitsberechnung autofrettierter innendruckbeanspruchter Bauteile. Dissertation, TH Darmstadt.

DOI: 10.1002/mawe.19950260706

Google Scholar

[22] Hojjati MH, Hassani A (2007) Theoretical and finite-element modeling of autofrettage process in strain-hardening thick-walled cylinders. International Journal of Pressure Vessels and Piping 84: 310-319.

DOI: 10.1016/j.ijpvp.2006.10.004

Google Scholar

[23] Greuling S, Bergmann JW, Thumser R (2001) Ein Konzept zur Dauerfestigkeitssteigerung autofrettierter Bauteile unter Innendruck. Mat. -wiss. U. Werkstofftech. 32: 342-352.

DOI: 10.1002/1521-4052(200104)32:4<342::aid-mawe342>3.0.co;2-7

Google Scholar

[24] Leutwein U (2008) Einfluss von Autofrettage auf die Schwingfestigkeit innendruck-belasteter Bauteile aus Kugelgraphitguss. Dissertation, TU Illmenau.

Google Scholar

[25] Läpple V (2008) Einführung in die Festigkeitslehre. 2nd edn, Vieweg + Teubner Verlag, Wiesbaden.

Google Scholar

[26] Reynolds C, Kandlikar M (2007) How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption. Environ. Res. Lett. 2: 014003.

DOI: 10.1088/1748-9326/2/1/014003

Google Scholar