Accumulative Roll Bonding: Forming Behavior, Tailored Properties and Upscaling Approach

Article Preview

Abstract:

The Accumulative Roll Bonding (ARB) process enables the manufacturing of high strength sheet metals with outstanding mechanical properties by repeated rolling. However, the significant increase in strength leads to loss in ductility, especially regarding aluminum alloys of the 6000 series. The low formability obviously limits the implementation of these sheet products for formed components in automotive applications. To enhance formability, a local short term heat treatment according to the Tailored Heat Treated Blanks technology is used. For the finite element based design of forming operations accurate information about the plastic behavior of these tailored materials is required. Therefore, different stress - strain paths are considered using the tensile test and the layer compression test. In this context, heat treated and non-heat treated specimens out of ARB processed AA6016 were tested at room temperature. With the experimental results true stress strain curves and yield loci determined from different criteria and represented in a principal stress state were established. Regarding the experimental setup of the ARB process, an upscaling is essential for the production of sufficiently large strips to cut out blanks for the forming of components such as B-pillars. However, this requires the adaptation of the different process steps of the ARB process. In this context, the surface treatment before rolling of such large sheets is investigated, since it is particularly relevant for obtaining a strong bonding between the sheets. Another aspect is the investigation of the rolling process using the finite element analysis. In this regard, a thermal mechanical coupled simulation model of the roll bonding operation will be developed for the evaluation of different material combinations, different process temperatures and varying roller geometries. These investigations will enable the production of lightweight automotive components made of ARB processed high strength aluminum sheet metal with tailored properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-16

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Adam, H., Osbur, B., Patberg, L., Grüneklee, A., Flöth, T., Hinz, M., 2005: NewSteelBody - Auto body weight reduction with steel. In: Aluminium International Today, Vol. 17, No. 1, pp.42-44.

Google Scholar

[2] Merklein, M., Kaupper, M., 2009: Manufacturing of Innovative Car Seat Components by Forming of Advanced High Strength Steels - Fundamental Research and Application. In: Key Engineering Materials, Vol. 410-411, pp.3-11.

DOI: 10.4028/www.scientific.net/kem.410-411.3

Google Scholar

[3] Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T., Hong, R.G., 1998: Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process. In: Scripta Materialia, Vol. 39, No. 9, pp.1221-1227.

DOI: 10.1016/s1359-6462(98)00302-9

Google Scholar

[4] Vollertsen, F., Lange, K., 1998: Enhancement of drawability by local heat treatment. CIRP Annals, Vol. 47, No. 1, pp.181-184.

DOI: 10.1016/s0007-8506(07)62813-3

Google Scholar

[5] Merklein, M., Vogt, U., 2009: Principles for the Heat Treatment Layout of Ultrafine-Grain Aluminium Blanks with Locally Adapted Mechanical Properties. In: Dimitrov, D. (Edtr. ): Proceedings of the COMA 2010, pp.135-140.

Google Scholar

[6] Hausöl, T., Schmidt, C.W., Maier, V., Böhm, W., Nguyen, H., Merklein, M., Höppel, H.W., Göken, M., 2012: Formability of ultrafine-grained AA6016 sheets processed by accumulative roll bonding. In: Key Engineering Materials, Vol. 504-506, pp.575-580.

DOI: 10.4028/www.scientific.net/kem.504-506.575

Google Scholar

[7] Topic, I., 2009: Ultrafine-grained metal sheets produced using the accumulative roll bonding process for light-weight structures. PhD-thesis, Erlangen, Germany.

Google Scholar

[8] Tsuji, N., Saito, Y., Utsunomiya, H., Tanigawa, S., 1999: Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process. In: Scripta Materialia, Vol. 40, No. 7, pp.795-800.

DOI: 10.1016/s1359-6462(99)00015-9

Google Scholar

[9] Hausöl, T., Höppel, H.W., Göken, M., 2010: Microstructure and Mechanical Properties of Accumulative Roll Bonded AA6014/AA5754 Aluminium Laminates. In: Materials Science Forum, Vol. 667-669, pp.217-222.

DOI: 10.4028/www.scientific.net/msf.667-669.217

Google Scholar

[10] Vaidyanath, L. R., Nicholas, M. G., Milner, D. R., 1959: Pressure Welding by Rolling. In: British Welding Journal, Vol. 6, pp.13-28.

Google Scholar

[11] May, J., Höppel, H.W., Göken, M., 2005: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. In: Scripta Materialia, Vol. 53, No. 2, pp.189-194.

DOI: 10.1016/j.scriptamat.2005.03.043

Google Scholar

[12] Vogt, U., 2009: Seriennahe Auslegung von Aluminium Tailored Heat Treated Blanks. PhD-thesis, Meisenbach Verlag Bamberg, Germany.

Google Scholar

[13] Hofmann, A., 2002: Erweiterung der Formgebungsgrenzen beim Umformen von Aluminiumwerkstoffen durch den Einsatz prozessangepasster Platinen. PhD-thesis, Meisenbach Verlag, Bamberg, Germany.

Google Scholar

[14] Gese, H., Keller, S., Yeliseyev, V., Dell, H., 2007: Ermittlung von Fließwiderstandskurven bei großen Formänderungen für die Blechumformsimulation. In: Frenz., H. (Edtr. ): Kennwertermittlung für die Praxis. Wiley-VCH Verlag, Weinheim, Germany.

DOI: 10.1002/9783527610310.ch32

Google Scholar

[15] Kessler, L., Borsutzki, M., Gerlach, J., Schaumann, T. W., 2005: Ermittlung und Anwendung von Werkstoffdaten für die Unterstützung der numerischen Bauteilentwicklung. In: Fünftes Industriekolloquium, SFB 362 Fertigen in Feinblech, pp.67-76.

Google Scholar

[16] Reyes, A., Hopperstad, O. S., Lademo, O. -G., Langseth, M., 2006: Modeling of textured aluminum alloys used in a bumper system: Material tests and characterization. In: Computational Materials Science, Vol. 37, No. 3, pp.246-268.

DOI: 10.1016/j.commatsci.2005.07.001

Google Scholar

[17] Herzig, N., Abdel-Malek, S., Meyer, L. W., 2010: Experimentelle Ermittlung und Modellierung dynamischer Fließortkurven an Blechwerkstoffen. In: Proc. of the 9th LS-DYNA forum, pp.29-40.

Google Scholar

[18] Merklein, M., 2006: Charakterisierung von Blechwerkstoffen für den Leichtbau. PhD-thesis, Meisenbach Verlag, Bamberg, Germany.

Google Scholar

[19] Merklein, M., Biasutti, M., Nguyen, H., Böhm, W., 2011: Flow Behaviour of Advanced Aluminium Materials. In: Hirt, G.; Tekkaya, E.A. (Edtr. ): Steel research international: Special Edition: 10th International Conference on Technology of Plasticity, Wiley-VCH Verlag, Weinheim, Germany, pp.1066-1071.

Google Scholar

[20] Hill, R., 1948: A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the Royal Society of London, 193A, pp.281-297.

Google Scholar

[21] Hill, R., 1990: Constitutive modeling of orthotropic plasticity in sheet metals. In: Journal of the Mechanics and Physics of Solids, Vol. 38, No. 3, pp.405-417.

DOI: 10.1016/0022-5096(90)90006-p

Google Scholar

[22] Barlat, F., Lege, D.J., Brem, J.C., 1991: A six component yield function for anisotropic materials. In: International Journal of Plasticity, Vol. 7, No. 7, pp.693-712.

DOI: 10.1016/0749-6419(91)90052-z

Google Scholar