CVD Coated Diamond Tools for the Machining of Lightweight Materials

Article Preview

Abstract:

The economic machining of materials used in the automotive and aeronautical industries, such as aluminium silicon alloys is often not possible without the use of superhard tools. CVD diamond coated tools have demonstrated their suitability for these applications in the past, however, the insufficient coating adhesion and thus tool failure remains an issue to date. Within the work presented here, two cemented carbide types were studied as substrates for CVD diamond coatings. Milling and turning tests were undertaken in order to assess the coating adhesion of the diamond tools. Furthermore, residual stress analysis was undertaken with the aim of understanding the impact of the coating and substrate residual stresses on the tool’s process performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-73

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] König J.; Herstellung und Einsatz CVD-diamantbeschichteter Bohrgewindefräser. Berichte aus dem Produktionstechnischem Zentrum Berlin. Hrsg.: Uhlmann, E. Stuttgart: Fraunhofer IRB (2007) pp.1-2.

Google Scholar

[2] Uhlmann E., Reimers W., Byrne F., Klaus M.; Analysis of tool wear and residual stress of CVD diamond coated cemented carbide tools in the machining of aluminium-silicon alloys. Production Engineering Research & Development (2010), 4, pp.203-209.

DOI: 10.1007/s11740-010-0213-x

Google Scholar

[3] Bouzakis K.D., Michailidis N., Gerardis S., Kaatirtzoglou G., Lili E., Pappa M., Cremer R.; Application of the Impact Test to Predict Coated Tools' Cutting Performance in Miling Inconel 718. Advanced Engineering Materials (2008).

DOI: 10.1002/adem.200800065

Google Scholar

[4] Genzel Ch., Denks I.A., Gibmeier J., Klaus M., Wagener G.; The Material Science Synchrotron Beamline EDDI for Energy-Dispersive Diffraction Analysis. Nucl. Instrum. Methods in Phys. Research (2007) A 578, pp.23-33.

DOI: 10.1016/j.nima.2007.05.209

Google Scholar

[5] Eigenmann B., Scholtes B., Macherauch E.; Eine Mehrwellenlängenmethode zur röntgenographischen Analyse oberflächennaher Eigenspannungszustände in Keramiken. Mat. -wiss. u. Werkstofftechn. (1990) 21, pp.257-265.

DOI: 10.1002/mawe.19900210705

Google Scholar

[6] Eigenmann B.; Röntgenographische Analyse inhomogener Spannungszustände in Keramiken, Keramik-Metall-Fügeverbindungen und dünnen Schichten. Dissertation Karlsruhe (1992).

Google Scholar

[7] Genzel Ch., Stock C., Reimers W.; Application of Energy-Dispersive Diffraction to the Analysis of Multiaxial Residual Stress Fields in the Intermediate Zone between Surface and Volume. Mat. Sci. Eng. (2004) A372, pp.28-43.

DOI: 10.1016/j.msea.2003.09.073

Google Scholar

[8] Ruppersberg H., Detemple I., Krier J.; Evaluation of Strongly Non-Linear Surface-Stress Fields σxx(z) and σyy(z) from Diffraction Experiments. phys. stat. sol. (a) (1989) 116, pp.681-687.

DOI: 10.1002/pssa.2211160226

Google Scholar

[9] Ruppersber H., Detemple I.; Evaluation of the Complex Stress Field in a Ground Steel Plate from Energy Dispersive X-Ray Diffraction Experiments. phys. stat. sol. (a) (1989) 116, pp.681-687.

Google Scholar

[10] Macherauch E., Müller P.; Das sin²y - Verfahren der röntgenographischen Spannnungsmessung. Z. angew. Physik (1961) 13, pp.305-312.

Google Scholar

[11] Eigenmann B., Macherauch E.; Röntgenographische Untersuchung von Spannungszuständen in Werkstoffen. Teil III. Mat. -wiss. u. Werkstofftechn. (1996) 27, pp.426-437.

DOI: 10.1002/mawe.19960270907

Google Scholar