Design, Development and Realisation of an Active Driven Knee-Prosthesis with Bevel Helical Gearbox

Article Preview

Abstract:

This paper presents the development of an active driven prosthesis for transfemoral amputees. At the beginning of the development process gait parameters are analyzed. Defined boundary conditions help to get the right technical parameters for a structured development process. During the following development process, different concepts for active driven knee prostheses are discussed. Essential components for active driven prosthesis systems are presented. The focus during the scientific work is the development of an active drive system for an active driven knee prosthesis. A first prototype of an active driven knee prosthesis is shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-239

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. v. Rosenberg, Vorstellung eines lnertialen Messsystem für die medizinische Ganganalyse, in Internationales Forum Mechatronik, begleitend zur Motek (2008), Stuttgart, (2008).

Google Scholar

[2] J. Haug, New chances for highly integrated electric drives, in Medtec Innovation Forum 2010, Stuttgart, (2010).

Google Scholar

[3] Össur, Februar 2012. [Online]. Available: http: /www. ossur. de/Pages/7062.

Google Scholar

[4] L. Milde, Technik muss Menschen dienen - Innovationen bei Beinprothesen, In: Gesundheitsprofi (2000), Bd. Nr. 05/2000, pp.21-23, Mai (2000).

Google Scholar

[5] Össur , Rheo Knee, [Online]. Available: www. ossur. de/pages/16231. [Zugriff am 31 März 2012].

Google Scholar

[6] Frost&Sullivan, U.S. Lower Extremity Prosthetics Markets N 132 - 54, Frost and Sullivan, Palo Alto (USA), (2007).

Google Scholar

[7] Medi, OM8, [Online]. Available: http: /www. medi. de/patient/produkte/beinprothetik/medi-gelenke/medi-om8. html. [Zugriff am 31 März 2012].

Google Scholar

[8] Streifeneder ortho. production GmbH, 3A16 Modular-Kniegelenk-Edelstahl rostfrei-, " [Online]. Available: http: /www. gmbh. streifeneder. de/index. php, id=259&tx_mslogicinfoorder_pi1[showUid]=34564&cHash=2c9cfbac86. [Zugriff am 31 März 2012].

Google Scholar

[9] S. G. Gissurarson, The power knee - The first active knee, in Medtec Innovation Forum 2010, Stuttgart, (2010).

Google Scholar

[10] R. L. Waters, J. Perry, D. Antonelli und H. Hislop, Energy cost of walking of amputees: the influence of level of amputation, In: The Journal of Bone & Joint Surgery (1976), Bd. Nr. 58, pp.42-46, Januar (1976).

DOI: 10.2106/00004623-197658010-00007

Google Scholar

[11] B. Budaker, K. Philipp, N. Parspour und U. Schneider, Model Based Design of Drive Systems for Active Driven Prostheses and Orthoses, in Technicallly Assisted Rehabilitation TAR 2011, 3rd European Conference, Berlin, (2011).

Google Scholar

[12] A. Gottlob, Differenziertes Krafttraining: mit Schwerpunkt Wirbelsäule, München: Urban & Fischer, (2001).

Google Scholar

[13] M. P. Murray, A. Drought und R. C. Kory, Walking Patterns of Normal Men, In: The Journal of Bone and Joint Surgery, Nr. 46, pp.335-360, (1964).

DOI: 10.2106/00004623-196446020-00009

Google Scholar

[14] C. Kirtley, Clinical Gait Analysis, 1. Hrsg., Churchill Livingstone, (2006).

Google Scholar

[15] K. Fuest und P. Döringer, Elektrische Maschinen und Antriebe, 5 Hrsg., Braunschweig/Wiesbaden: Friedrich Vieweg & Sohn Verlagsgesellschaft GmbH, (2000).

Google Scholar

[16] J. M. Donelan, Q. Li, V. Naing, J. Hoffer, D. Weber und A. Kuo, Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort, In: Science, Bd. 319, Nr. 5864, pp.807-810, (2008).

DOI: 10.1126/science.1149860

Google Scholar

[17] J. Perry, Norm und Pathologie des menschlichen Ganges, München Jena: Urban & Fischer Elsevier, 1992, (1992).

Google Scholar

[18] B. Budaker, Actively Driven Prostheses - The Need for New Drive Concepts, in Medtec Innovation Forum 2010, Stuttgart, (2010).

Google Scholar

[19] B. Budaker, Methodics in product development I: Grey box approach in prosthetic drive design, in Medtec Innovation Forum 2012, Stuttgart, (2012).

Google Scholar

[20] Y. Akao, QFD: Quality Function Deployment - Integrating Customer Requirements into Product Design, New York: Productivity Press, (2004).

Google Scholar

[21] B. Rohrbach, Kreativ nach Regeln - Methode 635, eine neue Technik zum Lösen von Problemen, Absatzwirtschaft, pp.73-76, 1 Oktober (1969).

Google Scholar

[22] C. Zangmeister, Nutzwertanalyse in der Systemtechnik, Berlin: Wittemann, (1970).

Google Scholar

[23] B. Budaker, Actively Powered Prostheses and Orthoses – The Need for New Lightweight Drive Concepts, in Design of Medical Devices Conference, Minneapolis, (2011).

Google Scholar

[24] C. Schweizer, Modellierung des Energieflusses einer aktiv angetriebenen Beinprothese mittels Zustandsraumdarstellung, Stuttgart, (2011).

Google Scholar

[25] S. Baldursson, Bldc motor modelling and control - a matlab/simulink implementation, Göteborg (S), (2005).

Google Scholar

[26] B. Budaker, P. Budaker, U. Schneider und O. Schwarz, Optimierung des Angriffshebels in aktiv angetriebenen Prothesen, in BMT 2010, 44. DGBMT Jahrestagung 3-Länder-Tagung D-A-CH, Rostock, (2010).

Google Scholar

[27] B. Budaker, T. Feiler und L. Hovy, Aktive Prothese mit Kegelstirnradgetriebe,. Deutschland Patent DE 10 2011 116 751. 3, 20 24 (2011).

Google Scholar

[28] H. Hee und A. Wilkenfeld, User-adaptive control of a magnethorheological prosthetic knee, In: Industrial Robot: An International Journal (2003), Bd. Nr. 1, Nr. 3, pp.42-55, (2003).

DOI: 10.1108/01439910310457706

Google Scholar

[29] K. Yuan, J. Zhu, Q. Wang und L. Wang, Finite-State Control of Powered Below-Knee Prosthesis with Ankle and Toe, In: Preprints of the 18th IFAC World Congress (2011), pp.2865-2870, August / September (2011).

DOI: 10.3182/20110828-6-it-1002.03064

Google Scholar

[30] H. v. Rosenberg, B. Budaker und M. Barho, Realtime gait phase detection with an inertial measurement unit for lower limb prostheses, in BMT 2011 45. DGBMT Jahretagung (2011), Freiburg, (2011).

Google Scholar