Solid-Phase Synthesis of Pyrrole-Imidazole Polyamides by Resin

Article Preview

Abstract:

Over the past years, synthesis of pyrrole-imidazole (Py-Im) polyamides has been achieved by solution-phase and solid-phase methods. Comparing with solution-phase synthesis, the solid-phase synthesis has showed great superiority in various aspects. The solid-phase synthesis is a rapid, effective, energy-saving and environment-friendly method, which has been widely used in the synthesis of pyrrole-imidazole polyamides. Many complicated polyamides can be obtained quickly and effectively through this method. By far, the application of the solid-phase synthesis for Py-Im polyamides has made rapid development. Resin as the main carrier, a key substance in solid phase synthesis, consists of two parts: polymer (macromolecular resin) and linking chain (linker). To date, there are many kinds of resins applied in the solid phase synthesis, such as PAM resin, Wang resin, Oxime resin and Clear resin, and so on. In this article, we will focus on the elaboration about the basic principle and application of the four kinds of resins mentioned above in solid-phase synthesis of polyamides. This provides an important reference for development of polyamides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-219

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. B. Dervan: Bioorg Med Chem 9 (2001), pp.2215-2235. (b) T. Bando and H. Sugiyama: Acc Chem Res 39 (2006), pp.935-944.

Google Scholar

[2] R. S. Edayathumangalam, P. Weyermann, et al. Proc Natl Acad Sci USA 101 (2004) pp.6864-6869. (b) Y. W. Han, T. Matsumoto, et al. Nucleic Acids Res 40(22) (2012), pp.11510-11517.

Google Scholar

[3] P. B. Dervan and B. S. Edelson: Curr Opin Struct Biol 13(3) (2003), pp.284-299. (b) P. B. Dervan, A. T. Poulin-Kerstien, et al. Top Curr Chem 253 (2005), pp.1-31.

Google Scholar

[4] S. White, J. W. Szewczyk, et al. Nature 391 (1998), pp.468-471.

Google Scholar

[5] W. Zhang, T. Bando, et al. J Am Chem Soc 128(27) (2006), pp.8766-8776.

Google Scholar

[6] W. Zhang, M. Minoshima, et al. J Am Chem Soc 128(46) (2006), pp.14905-14912.

Google Scholar

[7] W. Zhang, S. K. Jiang, et al. ChemBioChem 13 (2012), pp.47-50.

Google Scholar

[8] H. F. Zhang, Y. L. Wu, et al. ChemBioChem 13 (2012), pp.1366-1374.

Google Scholar

[9] H. Matsuda, N. Fukuda, et al. J Am Soc Nephrol 17 (2006), pp.422-432. (b) J. A. Raskatov, N. G. Nickols, et al. Proc Natl Acad Sci USA 109 (2012), pp.16041-16045. (c) D. M. Chenoweth, J. L. Meier, et al. Angew Chem Int Ed 54 (2013), pp.415-418.

Google Scholar

[10] H. Matsuda, N. Fukuda, et al. Kidney Int 79 (2011).

Google Scholar

[11] D.M. Chenoweth, D. A. Harki, et al. J Am Chem Soc 131(20) (2009), pp.7175-7181. (b) B. C. Li, D. C. Montgomery, et al. J Org Chem 78(1) (2013), pp.124-133.

Google Scholar

[12] E. E. Baird, P. B. Dervan, et al. J Am Chem Soc 118 (1996), pp.6141-6146.

Google Scholar

[13] C. J. Chou, M. E. Farkas, et al. Mol Cancer Ther 7(4) (2008), pp.769-778.

Google Scholar

[14] N. R. Wurtz, J. M. Turner, et al. Org Lett 3 (2001), pp.1201-1203.

Google Scholar

[15] P. B. Dervan and E. E. Baird: U. S. Patent 6, 545, 162B1. (2003).

Google Scholar

[16] V. K. Sarin, S. B. H. Kent, et al. J Am Chem Soc 102(17) (1980), pp.5463-5470.

Google Scholar

[17] Bogdan, J. Cristian, et al. J Am Chem Soc 125(16) (2003), pp.4741-4751.

Google Scholar

[18] J. M. Belitsky, D. H. Nguyen, et al. Bioorg Med Chem 10(8) (2002), pp.2767-2774.

Google Scholar

[19] R. Lazny, A. Nodzewska, et al. J Comb Chem 7(1) (2005), 109-116.

Google Scholar

[20] K. Maria and B. George: J Am Chem Soc 118 (1996), pp.7083-7093.

Google Scholar

[21] N. G. Nickols, J. O. Szablowski, et al. Mol Cancer Ther 12(5) (2013), pp.675-684.

Google Scholar

[22] T. Vaijayanthi, T. Bando, et al. Bioorg Med Chem 21(4) (2013), pp.852-855.

Google Scholar