Determination of the Crystallographic and Electronic Structure of Cesium Holmium Polyphosphate CsHo(PO3)4 with One-Dimensional Tunnel

Article Preview

Abstract:

Solution reaction on the Cs2CO3Ho2O3NH4H2PO4 system at the high temperature led to a new cesium holmium polyphosphate, namely, CsHo (PO3)4. Single-crystal X-ray diffraction analysis shows that the title compound crystallizes in the monoclinic system, space group P21/c, and Z = 4 with the following unit-cell dimensions: a = 8.7598(4), b = 9.1580(4), c = 13.7271(6) Å, β = 100.078(1)°. The structure is a complicated three-dimensional (3D) network constructed by the interconnection of [P4O12]4- anionic chains and isolated HoO8 polyhedra via corner-sharing with 1D tunnels occupied by cesium atoms. The electronic structure, density of states, the chemical bonds, and optical properties have been also performed by density functional theory method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

502-508

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Yamada, K. Otsuka, J. Nakano, J. Appl. Phys. 45 (1974) 5096–5097.

Google Scholar

[2] T.Q. Sun, X.D. Zhou, X.Q. Wang, G.Q. Shen, Y.F. Kong, J.J. Xu, D.Z. Shen, J. Cryst. Growth 312 (2010) 1627–1631.

Google Scholar

[3] J. Zhu, W.D. Cheng, D.S. Wu, H. Zhang, Y.J. Gong, H.N. Tong, D. Zhao, J. Alloys Compd. 454 (2008) 419–426.

Google Scholar

[4] A. Akrim, D. Zambon, J. Metin, J.C. Cousseins, Eur. J. Solid State Inorg. Chem. 30 (1993) 483.

Google Scholar

[5] I. Parreu, J.J. Carvajal, X. Solans, F. Díaz, M. Aguiló, Chem. Mater. 18 (2006) 221–228.

Google Scholar

[6] I. Parreu, R. Solé, J. Gavaldà, J. Massons, F. Díaz, M. Aguiló, Chem. Mater. 15 (2003) 5059–5064.

DOI: 10.1021/cm034812g

Google Scholar

[7] A. Oudahmane, M. Daoud, B. Tanouti, D. Avignant, D. Zambon, Acta Cryst. E65 (2009) i91–i92.

DOI: 10.1107/s1600536809048788

Google Scholar

[8] J. Zhu, W.D. Cheng , H. Zhang. Acta Cryst. E65 (2009) i70.

Google Scholar

[9] M. Fang, W.D. Cheng, Z. Xie, H. Zhang, D. Zhao, W.L. Zhang, S.L. Yang, J. Mol. Struct. 891 (2008) 25–29.

Google Scholar

[10] D. Zhao, H. Zhang, S.P. Huang, M. Fang, W.L. Zhang, S.L. Yang, W.D. Cheng, J. Mol. Struct. 892 (2008) 8–12.

Google Scholar

[11] G.M. Sheldrick, SHELXTL-97 Program for Refining Crystal Structure, University of Göttingen, Göttingen, Germany, (1997).

Google Scholar

[12] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7–13.

Google Scholar

[13] M. Segall, P. Linda, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, Materials Studio CASTEP version 2. 2, (2002).

Google Scholar

[14] M. Segall, P. Linda, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, J. Phys.: Condens. Mater. 14 (2002) 2717–2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[15] D.R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43 (1979) 1494–1497.

Google Scholar

[16] J.R. Macdonald, M.K. Brachman, Rev. Mod. Phys. 28 (1956) 383.

Google Scholar

[17] J. Zhu, W.D. Cheng, H. Zhang, D.S. Wu, D. Zhao, Chinese J. Struct. Chem. 27 (2008) 471–476.

Google Scholar

[18] E. Ben. Zarkouna, A. Driss, M. Férid, Acta Cryst. E65 (2009) i10.

Google Scholar

[19] K. Horchani-Naifer, J. Amami, M. Férid, J. Rare Earth. 26 (2008) 765–769.

DOI: 10.1016/s1002-0721(09)60001-6

Google Scholar

[20] M. Férid, K. Horchani-Naifer, Mater. Res. Bull. 39 (2004) 2209–2217.

Google Scholar

[21] J.A. Dean, Ed. Lange's Handbook of Chemistry, 13th edition, McGraw-Hill Book Company, (1985).

Google Scholar