[1]
Lim, S.H., Luo, J., Zhong, Z., Ji, W., and Lin, J. Inorganic chemistry. Vol. 44 (2005), p.14124.
Google Scholar
[2]
Seayad, A.M., and Antonelli, D.M. Recent Advances in Hydrogen Storage in Metal ‐Containing Inorganic Nanostructures and Related Materials. Advanced materials. Vol. 16 (2004), p.765.
DOI: 10.1002/adma.200306557
Google Scholar
[3]
Oh, S., Daraio, C., Chen, L.H., Pisanic, T.R., Finones, R.R., and Jin, S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A . Vol. 78(2006), p.97.
DOI: 10.1002/jbm.a.30722
Google Scholar
[4]
Grätzel, M. Photoelectrochemical cells. Nature . Vol. 414(2001), p.338.
Google Scholar
[5]
Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano letters . Vol. 6(2006), p.215.
DOI: 10.1021/nl052099j
Google Scholar
[6]
Mor, G.K., Varghese, O.K., Paulose, M., and Grimes, C.A. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Advanced Functional Materials . Vol. 15(2005), p.1291.
DOI: 10.1002/adfm.200500096
Google Scholar
[7]
Albu, S.P., Ghicov, A., Macak, J.M., Hahn, R., and Schmuki, P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano letters . Vol. 7 (2007), p.1286.
DOI: 10.1021/nl070264k
Google Scholar
[8]
Wang, J., and Lin, Z. Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chemistry of Materials . Vol. 20 (2008), p.1257.
DOI: 10.1021/cm7028917
Google Scholar
[9]
Hunter, M., and Fowle, P. Determination of barrier layer thickness of anodic oxide coatings. Journal of the Electrochemical Society. Vol. 101(1954), p.481.
DOI: 10.1149/1.2781304
Google Scholar
[10]
Rho, C., Min, J. -H., and Suh, J.S. Barrier Layer Effect on the Electron Transport of the Dye-Sensitized Solar Cells Based on TiO2 Nanotube Arrays. The Journal of Physical Chemistry C . Vol. 116(2012), p.7213.
DOI: 10.1021/jp211708y
Google Scholar
[11]
Macak, J.M., Tsuchiya, H., and Schmuki, P. High‐Aspect ‐Ratio TiO2 Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition . Vol. 44(2005), p.2100.
DOI: 10.1002/anie.200462459
Google Scholar
[12]
Kang, S.H., Kim, J. -Y., Kim, H.S., and Sung, Y. -E. Formation and mechanistic study of self-ordered TiO< sub> 2</sub> nanotubes on Ti substrate. Journal of Industrial and Engineering Chemistry . Vol. 14(2008), p.52.
DOI: 10.1016/j.jiec.2007.06.004
Google Scholar
[13]
Chertihin, G.V., and Andrews, L. Reactions of laser ablated Ti atoms with hydrogen during condensation in excess argon. Infrared spectra of the TiH, TiH2, TiH3, and TiH4 molecules. Journal of the American Chemical Society . Vol. 116 (1994).
DOI: 10.1021/ja00097a045
Google Scholar
[14]
Lenning, G., Craighead, C., and Jaffee, R. Constitution and mechanical properties of titanium-hydrogen alloys. J Metals . Vol. 6 (1954).
DOI: 10.1007/bf03398020
Google Scholar
[15]
Lisowski, W., Van den Berg, A., Leonard, D., and Mathieu, H. Characterization of titanium hydride films covered by nanoscale evaporated Au layers: ToF‐SIMS, XPS and AES depth profile analysis. Surface and interface analysis . Vol. 29(2000).
DOI: 10.1002/(sici)1096-9918(200004)29:4<292::aid-sia863>3.0.co;2-l
Google Scholar
[16]
Paulin, I., Donik, Č., Mandrino, D., Vončina, M., and Jenko, M. Surface characterization of titanium hydride powder Vacuum . Vol. 86(2012), p.608.
DOI: 10.1016/j.vacuum.2011.07.054
Google Scholar
[17]
Iijima, M., Yuasa, T., Endo, K., Muguruma, T., Ohno, H., and Mizoguchi, I. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions. Dental materials journal Vol. 29(2010), p.53.
DOI: 10.4012/dmj.2009-069
Google Scholar