Preparation of Freestanding TiO2 Nanotube Arrays via Controlling the Anodizing Voltage

Article Preview

Abstract:

In order to assemble titania nanotubes arrays (TNTs) with better performance in solar cells application, hierarchical voltage-reduction was employed to reduce the thickness of barrier layer and acquire freestanding films simultaneously. Study of intratubular microenvironment and TiO2/Ti interface indicated that it might be H+ generated in anodizing process permeating into the Ti substrate that resulted in peeling off the whole tube layers. Our findings provide a promising way to fabricate freestanding TNTs membranes just by tailoring the applied voltage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

821-825

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lim, S.H., Luo, J., Zhong, Z., Ji, W., and Lin, J. Inorganic chemistry. Vol. 44 (2005), p.14124.

Google Scholar

[2] Seayad, A.M., and Antonelli, D.M. Recent Advances in Hydrogen Storage in Metal ‐Containing Inorganic Nanostructures and Related Materials. Advanced materials. Vol. 16 (2004), p.765.

DOI: 10.1002/adma.200306557

Google Scholar

[3] Oh, S., Daraio, C., Chen, L.H., Pisanic, T.R., Finones, R.R., and Jin, S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A . Vol. 78(2006), p.97.

DOI: 10.1002/jbm.a.30722

Google Scholar

[4] Grätzel, M. Photoelectrochemical cells. Nature . Vol. 414(2001), p.338.

Google Scholar

[5] Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano letters . Vol. 6(2006), p.215.

DOI: 10.1021/nl052099j

Google Scholar

[6] Mor, G.K., Varghese, O.K., Paulose, M., and Grimes, C.A. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Advanced Functional Materials . Vol. 15(2005), p.1291.

DOI: 10.1002/adfm.200500096

Google Scholar

[7] Albu, S.P., Ghicov, A., Macak, J.M., Hahn, R., and Schmuki, P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano letters . Vol. 7 (2007), p.1286.

DOI: 10.1021/nl070264k

Google Scholar

[8] Wang, J., and Lin, Z. Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chemistry of Materials . Vol. 20 (2008), p.1257.

DOI: 10.1021/cm7028917

Google Scholar

[9] Hunter, M., and Fowle, P. Determination of barrier layer thickness of anodic oxide coatings. Journal of the Electrochemical Society. Vol. 101(1954), p.481.

DOI: 10.1149/1.2781304

Google Scholar

[10] Rho, C., Min, J. -H., and Suh, J.S. Barrier Layer Effect on the Electron Transport of the Dye-Sensitized Solar Cells Based on TiO2 Nanotube Arrays. The Journal of Physical Chemistry C . Vol. 116(2012), p.7213.

DOI: 10.1021/jp211708y

Google Scholar

[11] Macak, J.M., Tsuchiya, H., and Schmuki, P. High‐Aspect ‐Ratio TiO2 Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition . Vol. 44(2005), p.2100.

DOI: 10.1002/anie.200462459

Google Scholar

[12] Kang, S.H., Kim, J. -Y., Kim, H.S., and Sung, Y. -E. Formation and mechanistic study of self-ordered TiO< sub> 2</sub> nanotubes on Ti substrate. Journal of Industrial and Engineering Chemistry . Vol. 14(2008), p.52.

DOI: 10.1016/j.jiec.2007.06.004

Google Scholar

[13] Chertihin, G.V., and Andrews, L. Reactions of laser ablated Ti atoms with hydrogen during condensation in excess argon. Infrared spectra of the TiH, TiH2, TiH3, and TiH4 molecules. Journal of the American Chemical Society . Vol. 116 (1994).

DOI: 10.1021/ja00097a045

Google Scholar

[14] Lenning, G., Craighead, C., and Jaffee, R. Constitution and mechanical properties of titanium-hydrogen alloys. J Metals . Vol. 6 (1954).

DOI: 10.1007/bf03398020

Google Scholar

[15] Lisowski, W., Van den Berg, A., Leonard, D., and Mathieu, H. Characterization of titanium hydride films covered by nanoscale evaporated Au layers: ToF‐SIMS, XPS and AES depth profile analysis. Surface and interface analysis . Vol. 29(2000).

DOI: 10.1002/(sici)1096-9918(200004)29:4<292::aid-sia863>3.0.co;2-l

Google Scholar

[16] Paulin, I., Donik, Č., Mandrino, D., Vončina, M., and Jenko, M. Surface characterization of titanium hydride powder Vacuum . Vol. 86(2012), p.608.

DOI: 10.1016/j.vacuum.2011.07.054

Google Scholar

[17] Iijima, M., Yuasa, T., Endo, K., Muguruma, T., Ohno, H., and Mizoguchi, I. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions. Dental materials journal Vol. 29(2010), p.53.

DOI: 10.4012/dmj.2009-069

Google Scholar