Preparation, Optical and Magnetic Properties of Ni-Doped CuAlO2 Nanocrystalline Films

Article Preview

Abstract:

This letter reports the preparation of Ni doped CuAlO2 nanaocrystalline films on sapphire substrates by sol-gel processing and subsequent thermal treatment in vacuum. The crystalline phase in the films was identified to be the delafossite structure by X-ray diffraction. Field-emission scanning electron microscope (FESEM) shows the quasi-cubic shape architecture of the as-prepared CuAlO2 nanaocrystalline films. Upon increasing the band gaps of Ni-doped CuAlO2 nanaocrystalline films increased due to the Burstein-Moss shift. The influence of different Ni doped concentration on absorption spectrum and magnetic properties of CuAlO2 films was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

826-832

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono: Nature Vol. 389 (1997), p.939.

DOI: 10.1038/40087

Google Scholar

[2] I. Hamberg and C.G. Granqvist: J. Appl. Phys Vol. 60 (1986), p.123.

Google Scholar

[3] C.G. Granqvist and A. Hultaker: Thin Solid Films Vol. 411 (2002), p.1.

Google Scholar

[4] K. Tonooka, K. Shimokawa and O. Nishimura: Thin Solid Film Vol. 411 (2002), p.129.

Google Scholar

[5] H. Ohta, M. Orita, M. Hirano, I. Yagi, K. Ueda and H. Hosono: J. Appl. Phys Vol. 91(2002), p.3074.

Google Scholar

[6] X.G. Zheng, K. Taniguchi and A. Takahashi: Appl. Phys. Lett Vol. 85 (2004), p.1728.

Google Scholar

[7] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono and N. Hamada: J. Appl. Phys Vol. 88 (2000), p.4159.

Google Scholar

[8] D.S. Kim, T.J. Park, D.H. Kim and S.Y. Choi: Physica Status Solidi A Appl Res Vol. 203 (2006), p.51.

Google Scholar

[9] A.N. Banejee, R. Maity and K.K. Chattopadhyay: Mater. Lett Vol. 58 (2004), p.10.

Google Scholar

[10] K. Ellmer: J. Phys. D. Appl Phys Vol. 34 (2001), p.3097.

Google Scholar

[11] K. Park, K.Y. Ko, H.C. Kwon and S. Nahm: J. Alloy. Comp Vol. 437 (2007), p.1.

Google Scholar

[12] N. Muhammad, Y. Yanfa, W. Aron, S. H. Wei, and M. Al-Jassim: Appl. Phys. Lett Vol 94 (2009), pp.251907-1.

Google Scholar

[13] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada: J. Appl. Phys Vol. 88 (2000), p.4159.

Google Scholar

[14] A.N. Banerjee, R. Maity, and K.K. Chattopadhyay: Mater. Lett Vol. 58 (2003), p.10.

Google Scholar

[15] J. Tate, M. K, Jayaraj, A. D, Deaeseke, T. Ulbrich, A.W. Sleight, K. A, Vanaja, R. Nagarajan, J. F, Wager, and R. L, Hoffman: Thin Solid Films Vol. 411(2002), p.119.

DOI: 10.1016/s0040-6090(02)00199-2

Google Scholar

[16] R. Nagarajan, A. D, Deaeseke, A. W, Sleight, and J. Tate: J. Appl. Phys Vol. 89 (2001), p.8022.

Google Scholar

[17] M. K, Jayaraj, A.D. Draeseke, J. Tate, and A.W. Sleight: Thin Solid Films Vol. 397 (2001), p.244.

DOI: 10.1016/s0040-6090(01)01362-1

Google Scholar

[18] K. Park, K.Y. Ko and W.S. Seo: J. Eur. Ceram. Soc Vol. 25 (2005), p.2219.

Google Scholar

[19] A.N. Banerjee and K. K Chattopadhyay: J. Appl. Phys Vol. 97 (2005), p.084308.

Google Scholar

[20] T. Sato, K. Sue, H. Tsumatori, M. Suzuki, S. Tanaka, K. Saitoh, K. Aida and T. Hiaki: J. Supercrit. Fluids Vol. 46 (2008), p.173.

DOI: 10.1016/j.supflu.2008.04.002

Google Scholar

[21] T. Dittrich, L. Dloczik, T. Guminskaya, N. Grigorieva and I. Urban: Appl. Phys. Lett Vol. 85 (2004), p.742.

DOI: 10.1063/1.1776611

Google Scholar

[22] J.K. Kim, S.S. Kim and W.S. Kim: Mater. Lett Vol. 59 (2005), p.4006.

Google Scholar

[23] L. Hou, Y.D. Hou, M.K. Zhu, H.L. Tang, J.B. Liu, H. Wang and H. Yan: Mater. Lett Vol. 59 (2005), p.197.

Google Scholar

[24] Z. Deng, X. Zhu, R. Tao, W. Dong and X. Fang: Mater. Lett Vol. 61 (2007), p.686.

Google Scholar

[25] M.S. Lee, T.Y. Kim and D. Kim: Appl. Phys. Let Vol. 79 (2001), p. (2028).

Google Scholar

[26] H.M. Luo, J. Menka, T.M. McCleskey, E. Bauer, A.K. Burrell, and Q.X. Jia: Adv. Mater Vol. 19 (2007), p.3604.

Google Scholar

[27] A.N. Banerjee, S. Kundoo and K. K Chattopadhyay: Thin Solid Films Vol. 440 (2003), p.5.

Google Scholar

[28] H. Gong, Y. Wang and Y. Luo: Appl. Phys. Lett Vol. 76 (2000), p.3959.

Google Scholar

[29] N. Muhammad, Y. Yanfa, W. Aron, S. H. Wei, and M. Al-Jassim: Phys. Rev. B Vol. 80 (2009), pp.035205-1.

Google Scholar

[30] J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York 1974).

Google Scholar

[31] C. Bouzidi, H. Bouzouita, A. Tiumoumi and B. Rezig: Mater. Sci. Eng. B Vol. 118 (2005), p.259.

Google Scholar

[32] Y.R. Park, J. Kim and Y.S. Kim: Appl. Surf. Sci Vol. 255 (2009), p.9010.

Google Scholar

[33] E. Burstein: Phys. Rev. Vol. 93 (1954), p.632.

Google Scholar

[34] T.S. Moss: Proc. Phys. Soc. Lond. Ser. B Vol. 67 (1954), p.775.

Google Scholar

[35] J. Christopher and C.S. Swamy: J. Mater. Sci Vol. 27(1992), p.1353.

Google Scholar

[36] S.Y. Zheng, G. I, Jian, J.R. Su and I.F. Zhu: Mater. Lett Vol. 60 (2006), p.3871.

Google Scholar

[37] M.V. Lalic, J. Mestnic-Filho, A.W. Carbonori and R.N. Saxena: Solid. State. Commun Vol. 125 (2003), p.175.

Google Scholar