Uncertainty Evaluation in Measurement of Thickness of SiO2/Si Using X-Ray Photoelectron Spectroscopy

Article Preview

Abstract:

Ultra-thin films of SiO2 (nominally 2, 4, 6, 8 and 10nm thick) on silicon, prepared by thermal oxidation, were investigated using x-ray photoelectron spectroscopy (XPS). The thickness of these thin films was obtained from a measurement of the photoelectron intensities originating from the substrate and the oxide layers by applying an appropriate quantitative model. The uncertainty budget of that thickness measurement method is given. The effective attenuation lengths or the corresponding electron inelastic mean free paths are of the most importance in the contribution of the uncertainties. For the SiO2 ultra-thin film with the nominal thickness of 2nm, it could generate 20% of the uncertainty.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

833-837

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Takahashi, M. B. Seman, K. Hirose, and T. Hattori, Jpn. J. Appl. Phys., Part 241(2002) L223-L229.

Google Scholar

[2] R. Flitsch and S. I. Raider, J. Vac. Sci. Technol. 2 (1975) 305-310.

Google Scholar

[3] J. M. Hill, D. G. Royce, C. S. Fadley, L. F. Wagner, and F. J. Grunthaner, Chem. Phys. Lett. 44 (1976) 225-230.

Google Scholar

[4] M. P. Seah and W. A. Dench, Surf. Interface Anal. 1 (1979) 2-23.

Google Scholar

[5] Seah MP. Surf. Sci, Vol. 471 (2001) 185-192.

Google Scholar

[6] Ebel H, Ebel MF, Svagera R, Hofman A, Surf. InterfaceAnal, 18 (1992) 821-829.

Google Scholar

[7] Gross Th, Lippitz A, Unger W, Guttler B, Surf. Interface Anal, 29 (2000) 891-899.

Google Scholar

[8] Hill JM, Royce DG, Fadley CS, Wagner LF, Grunthaner FJ, Chem. Phys. Lett. 44 (1976) 225-231.

Google Scholar

[9] Ishizaka A, Iwata S, Kamigaki, J. Surf. Sci. 84 (1979) 355-362.

Google Scholar

[10] Hochella MF, Carim AF, Surf. Sci. Lett. 197 (1988) L260-L266.

Google Scholar

[11] Fulghum JE, Stokell R, McGuire GE, Patnaik B, Yu N, Zhao YJ, Parikh N, J. Electron Spectrosc. 60 (1992) 117-123.

Google Scholar

[12] Fulghum JE, Surf. Interface Anal. 20 (1993) 161-167.

Google Scholar

[13] Mitchell DF, Clark KB, Bardwell JA, Leonard WN, Massoumi GR, Mitchell IV, Surf. Interface Anal. 21 (1994) 44-51.

Google Scholar

[14] Yano F, Hiraoka A, Itoga T, Kojima H, Kanehori K, Mitsui Y, J. Vac. Sci. Technol. A 13 (1995) 2671-2677.

Google Scholar

[15] Lu ZH, McCaffrey JP, Brar B, Wilk GD, Wallace RM, Feldman LC, Tay SP: Appl. Phys. Lett. 71 (1997) 2764-2771.

DOI: 10.1063/1.120438

Google Scholar

[16] Cole DA, Shallenberger JR, Novak SW, Moore RL, Edgell MJ, Smith SP, Hitzman CJ Kirchhoff JF, Principe E, Nieveen W, Huang FK, Biswas S, Bleiler RJ, Jones K, J. Vac. Sci. Technol. B, 18 (2000) 440-444.

DOI: 10.1109/iit.1999.812056

Google Scholar

[17] M. P. Seah and S. J. Spencer, Surf. Interface Anal. 33 (2002) 640-646.

Google Scholar