Influence of AlInGaN Blocking Layer on the Violet InGaN Laser Diodes

Article Preview

Abstract:

The advantages of AlInGaN as a blocking layer on the influence of violet InGaN laser diodes have been simulated, these results showed that the temperature characteristic (T0) of the violet InGaN laser diodes with AlInGaN blocking layer is lower than the T0 of the violet InGaN laser diodes with AlGaN blocking layer. These phenomenons are due to the improvement of electronics and holes distribution in the quantum wells with using AlInGaN blocking layer. Simulation results also showed that most optical characteristics of the violet InGaN laser diodes can be enhanced by using the AlInGaN blocking layer instead of the AlGaN blocking layer. The lower threshold current, carrier density, threshold gain and higher output power, slop efficiency of the violet InGaN laser diodes with the AlInGaN blocking layer have been obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

842-846

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. -R. Chen, S. -C. Ling, H. -M. Huang, P. -Y. Su, T. -S. Ko, T. -C. Lu, H. -C. Kuo, Y. -K. Kuo, S. -C. Wang: Appl. Phys. B 95 (2009), pp.145-153.

Google Scholar

[2] Y. -K. Kuo, Y. -A. Chang: IEEE J. Quant. Elect. 40 (2004), pp.437-444.

Google Scholar

[3] T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu and S. Nakamura: Jpn. J. Appl. Phys. 38 (1999), p. L914- L916.

DOI: 10.1143/jjap.38.l914

Google Scholar

[4] J. Piprek, R. Farrell, S. DenBaars and S. Nakamura: IEEE Photon Technol. Lett. 18 (2006), pp.7-9.

Google Scholar

[5] J. Han, M.H. Crawford, R.J. Shul, S.J. Hearne, E. Chason, J.J. Figiel, M. Banas: MRS Internet J. Nitride Semicond. Res. 4S1 (1999), G7. 7.

DOI: 10.1557/s109257830000346x

Google Scholar

[6] M.E. Aumer, S.F. LeBoeuf, F.G. McIntosh, S.M. Bedair: Appl. Phys. Lett. 75 (1999), pp.3315-3317.

DOI: 10.1063/1.125336

Google Scholar

[7] Y. Liu, T. Egawa, H. Ishikawa, B. Zhang, M. Hao: Jpn. J. Appl. Phys. 43 (2004), pp.2414-2418.

Google Scholar

[8] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, K. Chocho and M. Sano: Jpn. J. Appl. Phys. 37 (1998), p. L1020-L1022.

DOI: 10.1143/jjap.37.l1020

Google Scholar

[9] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita and T. Mukai: Appl. Phys. Lett. 76 (2000), pp.22-24.

DOI: 10.1063/1.125643

Google Scholar

[10] S.M. Thahab, H. Abu Hassan and Z. Hassan, Opt. Express 15 (2007), pp.2380-2390.

Google Scholar

[11] Y.K. Kuo, B.T. Liou, M.L. Chen, S.H. Yen and C.Y. Lin: Opt. Commun. 231 (2004), pp.395-402.

Google Scholar

[12] H. -Y. Ryul, K. -H. Ha: Opt. Express 16 (2008), p.10849–10857.

Google Scholar

[13] H. Hirayama, Y. Enomoto, A. Kinoshita, A. Hirata, Y. Aoyagi: Appl. Phys. Lett. 80 (2002), pp.1589-1591.

Google Scholar

[14] ISE TCAD user's Manual Release 10. 0, Zurich, Switzerland, (2004).

Google Scholar

[15] S.L. Chuang, C.S. Chang: Phys. Rev. B 54 (1996), pp.2491-2504.

Google Scholar

[16] I. Vurgaftman, J.R. Meyer: J. Appl. Phys. 94 (2003), pp.3675-4369.

Google Scholar

[17] R.A. Abdullah, K. Ibrahim: Opt. Commun. 282 (2009), pp.4755-4758.

Google Scholar

[18] M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji and T. Hashizu: Phys. Status Solidi State (c) 1 (2004), pp.1461-1467.

DOI: 10.1002/pssc.200304086

Google Scholar

[19] M. Shono, Y. Nomura and Y. Bessho: Proc. SPIE 5365 (2004), pp.282-287.

Google Scholar

[20] R.A. Abdullah, K. Ibrahim, in: International Advanced Technology Congress, Kuala Lumpur, Malaysia, 3–5 November, (2009).

Google Scholar