High Tensile Ductility in Electrodeposited Bulk Nanocrystalline Ni–W Alloys

Article Preview

Abstract:

Bulk nanocrystalline Ni–W alloys were electrodeposited from a sulfamate bath that contained saccharin sodium as a gloss agent, and propionic acid and sodium gluconate as a complexing agent (SPG bath) to understand the tensile behavior. SPG bath with 1.0 and 5.0 g/L saccharin sodium at 45 ºC produced the bulk specimens with W content of 3.4 and 1.5 at.%, respectively. The electrodeposited alloys had a nanocrystalline structure with grain sizes of approximately 20 nm and a stronger (111) texture. The bulk nanocrystalline Ni–3.4 at.%W alloys deposited from an SPG bath with 1.0 g/L saccharin sodium exhibited a tensile strength of 1.6 GPa and tensile ductility of 1.8%. The bulk nanocrystalline Ni–1.5 at.%W alloys deposited from an SPG bath with 5.0 g/L saccharin sodium exhibited a tensile strength of 1.4 GPa and tensile ductility of 1.7%. The bulk nanocrystalline Ni–W alloys with a stronger (111) texture showed high strength and low plasticity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

497-502

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater Sci. 51 (2006) 427-556.

Google Scholar

[2] I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Forum 654-656 (2010) 1114-1117.

DOI: 10.4028/www.scientific.net/msf.654-656.1114

Google Scholar

[3] I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Trans. 52 (2011) 142-146.

Google Scholar

[4] I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Lett. 65 (2011) 2351-2353.

Google Scholar

[5] I. Matsui, H. Iwami, Y. Takigawa, T. Uesugi, K. Higashi, J. Surf. Finish. Soc. Jpn. 62 (2011) 686-690.

Google Scholar

[6] I. Matsui, S. Ono, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Eng. A 550 (2012) 363-366.

Google Scholar

[7] I. Matsui, T. Uesugi, Y. Takigawa, K. Higashi, Acta Mater. 61 (2013) 3360-3369.

Google Scholar

[8] Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Science 304 (2004) 273-276.

DOI: 10.1126/science.1095071

Google Scholar

[9] J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Nature 391 (1998) 561-563.

Google Scholar

[10] J.W. Cahn, Y. Mishin, A. Suzuki, Acta Mater. 54 (2006) 4953-4975.

Google Scholar

[11] T. Yamasaki, Scripta Mater. 44 (2001) 1497-1502.

Google Scholar

[12] T. Yamasaki, N. Oda, H. Matsuoka, T. Fukami, Mater. Sci. Eng. A 448-451 (2007) 833-835.

Google Scholar

[13] K. Fujita, T. Suidu, T. Yamasaki, J. Jpn. Inst. Met. 75 (2011) 348-354.

Google Scholar

[14] A. Giga, Y. Kimoto, Y. Takigawa, K. Higashi, Scripta Mater. 55 (2006) 143-146.

Google Scholar

[15] H. Hosokawa, H. Matsumoto, M. Hakamada, M. Mabuchi, J. Mater. Sci. 41 (2006) 8372-8376.

Google Scholar

[16] H. Iwasaki, K. Higashi, T.G. Nieh, Scripta Mater. 50 (2004) 395-399.

Google Scholar

[17] Y. Kimoto, A. Giga, T. Ohkubo, Y. Takigawa, K. Hono, K. Higashi, Mater. Trans. 48 (2007) 996.

DOI: 10.2320/matertrans.48.996

Google Scholar

[18] Y. Kimoto, S. Wakayama, A. Fujii, Y. Takigawa, K. Higashi, Mater. Trans. 48 (2007) 1483-1491.

Google Scholar

[19] A. Fujii, Y. Kimoto, S. Wakayama, Y. Takigawa, T. Uesugi, K. Higashi, Advanced Materials Research 26 (2007) 691-694.

DOI: 10.4028/www.scientific.net/amr.26-28.691

Google Scholar

[20] S. Wakayama, Y. Kimoto, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Forum 561 (2007) 1375-1378.

DOI: 10.4028/www.scientific.net/msf.561-565.1375

Google Scholar

[21] I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Microelectron. Eng. 91 (2012) 98-101.

Google Scholar

[22] I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Lett. 99 (2013) 65-67.

Google Scholar

[23] I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Eng. A 578 (2013) 318-322.

Google Scholar