[1]
P. Bordes, E. Hablot, E. Pollet, L. Avérous, Effect of clay organomodifiers on degradation of polyhydroxyalkanoates, Polym. Degrad. Stabil. 94 (2009) 789-796.
DOI: 10.1016/j.polymdegradstab.2009.01.027
Google Scholar
[2]
V. Nagarajana, M. Misraa, A.K. Mohanty, New engineered biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends and switchgrass: Fabrication and performance evaluation, Ind. Crop. Prod. 39 (2013).
DOI: 10.1016/j.indcrop.2012.05.042
Google Scholar
[3]
L. Zhang, C. Xiong, X. Deng, Biodegradable polyester blends for biomedical application, J. Appl. Polym. Sci. 56 (1995) 103-112.
DOI: 10.1002/app.1995.070560114
Google Scholar
[4]
S. Singh, A.K. Mohanty, Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation, Compos. Sci. Tech. 67 (2007) 1753-1763.
DOI: 10.1016/j.compscitech.2006.11.009
Google Scholar
[5]
J. Džalto, L.A. Medina, P. Mitschang, Volumetric interaction and material characterization of flax/furan bio-composites: Submitted to KMUNB International Journal of Applied Science and Technology (2014).
DOI: 10.14416/j.ijast.2014.01.004
Google Scholar
[6]
F.Z. Arrakhiza, M. El Achabya, A.C. Kakou, Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers Impact of chemical treatments, Mater. Des. 37 (2012) 379-383.
DOI: 10.1016/j.matdes.2012.01.020
Google Scholar
[7]
W.V. Srubar III, S. Pillaa, Z.C. Wrigh, Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites, Compos. Sci. Tech. 72 (2012) 708–715.
DOI: 10.1016/j.compscitech.2012.01.021
Google Scholar
[8]
Y.T. Zheng, D.R. Cao, D.S. Wang, Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC, Compos. Part A: Appl. Sci. Manuf. 38 (2007) 20–25.
DOI: 10.1016/j.compositesa.2006.01.023
Google Scholar
[9]
P.J. Jandas, S. Mohanty, S.K. Nayak, Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications, J. Clean. Prod. 52 (2013) 392-401.
DOI: 10.1016/j.jclepro.2013.03.033
Google Scholar
[10]
R. Dangtungee, S.S. Desaib, S. Tantayanonc, P. Supaphol, Melt rheology and extrudate swell of low-density polyethylene/ethylene–octene copolymer blends, Polym. Test. 25 (2006) 888–895.
DOI: 10.1016/j.polymertesting.2006.05.007
Google Scholar
[11]
R. Dangtungee, P. Supaphol, Melt rheology and extrudate swell of sodium chloride-filled low-density polyethylene: Effects of content and size of salt particles, Polym. Test. 29 (2010) 188–195.
DOI: 10.1016/j.polymertesting.2009.10.009
Google Scholar
[12]
N. Muksinga, M. Nithitanakula, B.P. Grady, R. Magaraphan, Melt rheology and extrudate swell of organobentonite-filled polypropylene nanocomposites, Polym. Test. 27 (2008) 470–479.
DOI: 10.1016/j.polymertesting.2008.01.008
Google Scholar
[13]
R. Ou, Y. Xie, M.P. Wolcott, F. Yuan, Q. Wang, Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites, Compos. Sci. Tech. 93 (2014) 68-75.
DOI: 10.1016/j.compscitech.2014.01.001
Google Scholar
[14]
R. Dangtungee, K. Petcharoen, K. Pinijsattawong, S. Siengchin, Investigation of the rheological properties and Die swell of polylactic acid/nanoclay composites in a capillary rheometer, Mech. Compos. Mater. 47 (2012) 663-670.
DOI: 10.1007/s11029-011-9246-2
Google Scholar
[15]
S. Modia, K. Koellingb, Y. Vodovotz, Assessing the mechanical, phase inversion, and rheological properties of poly-[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) blended with poly-(l-lactic acid) (PLA), Eur. Polym. J. 49 (2013).
DOI: 10.1016/j.eurpolymj.2013.07.036
Google Scholar