The Degradation of Poly (Butylene Succinate)/Natural Rubber Composites

Article Preview

Abstract:

In this study, poly (butylene succinate) (PBS)/nature rubber (NR) composites were prepared, and the effects of NR content on the biodegradability were evaluated by vermiculite-degradation test. X-ray Diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the degraded blends. The weight losses of PBS/NR composites are higher than that of pure PBS, and increased with adding NR content. The weight loss of 30% NR content composite after 120 days is 16.84%. The XRD and DSC results show that the crystallinity of PBS/NR composites increase after buried in vermiculite. These results were confirmed using SEM observations by the presence of many large holes and more cracks in the degradation surface morphology of the increasing content of NR. It was observed that PBS/NR composites are green-composites or eco-materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bioresources, R.; John Wiley, New York, (2004).

Google Scholar

[2] Colom, X.; Carrasco, F.; Pages, P.; Canavate, J. Comp Sci Technol 2003, 63, 161.

Google Scholar

[3] Yang, H. -S.; Kim, H. -J.; Son, J.; Park, H. -J.; Lee, B. -J.; Hwang,T. -S. Comp Struct 2004, 63, 303.

Google Scholar

[4] Lee, S. M.; Cho, D.; Park, W. H.; Lee, S. G.; Han, S. O.; Drzal, L. T. Compos. Sci. Technol. 2005, 65, 647-657.

Google Scholar

[5] Fujimaki, T. Polym. Degrad. Stab. 1998, 59, 209-214.

Google Scholar

[6] Shogren, R. L.; Doane, W. M.; Garlotta, D.; Lawton, J. W.; Willett, J. L. Polym Degrad Stab 2003, 79, 405.

Google Scholar

[7] Kim, M. N.; Lee, A. R.; Yoon, S.; Chin, I. J. Eur Polym Mater 2003, 36, 1677.

Google Scholar

[8] Tserki, V.; Matzimos, P.; Panayiotou, C. J Appl Polym Sci 2003, 88, 1825.

Google Scholar

[9] Shih, Y. F. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1231-1239.

Google Scholar

[10] Wang, X.; Yang, H.; Song, L.; Hu, Y.; Xing, W.; Lu, H. Combust. Sci. Technol. 2011, 72, 1-6.

Google Scholar

[11] Nugroho, P.; Mitomo, H.; Yoshii, F.; Kume, T.; Nishimura, K. Macromol. Mater. Eng. 2001, 286, 316-323.

DOI: 10.1002/1439-2054(20010501)286:5<316::aid-mame316>3.0.co;2-n

Google Scholar

[12] Kim, W.; Lee, D.; Min, K.; Park, L.; Kang, I.; Jeon, I.; Seo, K. J. Appl. Polym. Sci. 2001, 81, 1115-1124.

Google Scholar

[13] Bitinis, N.; Verdejo, R.; Maya, E.; Espuche, E.; Cassagnau, P.; Lopez-Manchado, M. Compos. Sci. Technol. 2012, 72, 305-313.

DOI: 10.1016/j.compscitech.2011.11.018

Google Scholar

[14] Chumsamrong, P.; Mondobyai, J. Advanced Materials Research 2008, 47, 1149-1152.

Google Scholar

[15] Nakason, C.; Pechurai, W.; Sahakaro, K.; Kaesaman, A. J. Appl. Polym. Sci. 2006, 99, 1600-1614.

DOI: 10.1002/app.22518

Google Scholar

[16] Hatakeyama, T.; Liu, Z. Handbook of thermal analysis; Wiley, (1998).

Google Scholar

[17] Ou, C. -F. European Polymer Journal 2002, 38, 467-473.

Google Scholar

[18] Ratto, J. A.; Stenhouse, P. J.; Auerbach, M.; Mitchell, J.; Farrell, R. Polymer 1999, 40, 6777-6788.

DOI: 10.1016/s0032-3861(99)00014-2

Google Scholar

[19] Ou, C. -F. European Polymer Journal 2002, 38, 467-473.

Google Scholar

[19] Oommen, Z.; Groeninckx, G.; Thomas, S. Journal of Polymer Science Part B: Polymer Physics 2000, 38, 525-536.

Google Scholar

[20] Jose, S.; Thomas, S.; Biju, P.; Koshy, P.; Karger-Kocsis, J. Polymer degradation and stability 2008, 93, 1176-1187.

DOI: 10.1016/j.polymdegradstab.2008.03.001

Google Scholar