[1]
Medeiros, W. S., Oliveira, M. V., Pereira, L. C., Cairo, C. A. A., Calixto, M. A., 2005. Calcium Phosphate Deposition on Porous Titanium Samples. In Fifth International Latin-American Conference on Powder Technology, 2005, Costa do Sauipe. Procedings of Fifth International Latin-American Conference on Powder Technology; Metallum Eventos Técnicos Científicos, Bahia, Brazil, v. CD.
Google Scholar
[2]
Oliveira, M. V., Moreira, A. C., Appoloni, C. R., Lopes, R. T., Pereira, L. C., Cairo, C. A. A., 2005. Porosity Study of Sintered Titanium Foams. In Fifth International Latin-American Conference on Powder Technology, Costa do Sauipe. Procedings of Fifth International Latin-American Conference on Powder Technology; Metallum Eventos Técnicos Científicos, Bahia, Brazil.
Google Scholar
[3]
German, M. R., 1996. Sintering Theory and practice. By Jhon Wiley & sons, inc.
Google Scholar
[4]
Banerjee, R., Nag, S., Fraser, H., 2005. A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Materials Science and Engineering C; 25: 282-289.
DOI: 10.1016/j.msec.2004.12.010
Google Scholar
[5]
Niinomi, M., 2003. Fatigue performance and cytotoxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4. 6Zr. Biomaterials. 24 (16): 2673-2683.
DOI: 10.1016/s0142-9612(03)00069-3
Google Scholar
[6]
Katti, K. S., 2004. Biomaterials in total joint replacement, Colloids and Surfaces B. Biointerfaces 39 (3): 133-142.
DOI: 10.1016/j.colsurfb.2003.12.002
Google Scholar
[7]
Geetha, M., Kamachi, M. U., Gogia, A. K., Asokamani, R., Raj, B., 2004. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corrosion Science; 46(4): 877-892.
DOI: 10.1016/s0010-938x(03)00186-0
Google Scholar
[8]
Niinomi, M., 2002. Recent metallic materials for biomedical applications. Metal Mater. Trans. A; 33A: 477–86.
Google Scholar
[9]
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., Yashiro, T. 1998. Design and mechanical properties of new β type titanium alloys for implant materials. Mat. Sci. Eng. A; A 243: 244–9.
DOI: 10.1016/s0921-5093(97)00808-3
Google Scholar
[10]
Kuroda, D., Niinomi, M., Fukui, H., Suzuki, A., Hasegawa, S., 2001. Mechanical performance of newly developed β -type titanium alloy, Ti–29Nb–13Ta–4. 6Zr, for biomedical applications. In: Niinomi, M., Okabe, T., Taleff, E. M., Lesure, D. R., Lippard, H. E., editors. Structural biomaterials for the 21st century. Warrendale: TMS, p.99.
DOI: 10.1016/s0142-9612(03)00069-3
Google Scholar
[11]
Niinomi, M., Kuroda, D., Fukunaga, K., Morinaga, M., Kato, Y., Yashiro, T., Suzuki, A., 1999. Corrosion wear fracture of new β type biomedical titanium alloys. Mat. Sci. Eng. A; A263: 193–9.
DOI: 10.1016/s0921-5093(98)01167-8
Google Scholar
[12]
Akahori, T., Niinomi, M., Yabunaka, T., Kuroda, D., Fukui, H., Suzuki, A., Hasegawa, J., 2001. Fretting fatigue characteristics of biomedical new b titanium alloy, Ti–29Nb–13Ta–4. 6Zr. In: Hanada, S., Zhong, Z., Nam, S. W., Wright, R. N., editors. Proceedings of the PRICM 4: The Jpn. Inst. Metals, p.209.
DOI: 10.1299/jsmeatem.2003.2._os07w0142
Google Scholar
[13]
Taddei, E. B., 2007. Obtenção da liga Ti 35Nb 7Zr 5Ta por metalurgia do pó para utilização em próteses ortopédicas. Tesis de Doutorado. Campo Montenegro, São José dos Campos, SP- Brasil.
DOI: 10.1590/s1517-70762007000100015
Google Scholar
[14]
Steinemann, S. G., 1980. Corrosion of surgical implants in vivo and in vitro tests. In: Winter, G. D., Leray, J. L., De Groot K, editors. Evaluation of biomaterials. NewYork: Wiley, p.1–34.
Google Scholar
[15]
Kawahara, H., Ochi, S., Tanetani, K., Kato, K., Isogai, M., Mizuno, Y., Yamamoto, H., Yamaguchi, A., 1963. Biological test of dental materials, Effect of pure metals upon the mouse subcutaneous fibroblast, strain L cell in tissue culture. J. Jpn. Soc. Dent. Apparat. Mater; 4: 65–75.
Google Scholar
[16]
Lee, Y-L., Pan, J., Hathaway, R., Barkey, M. E., 2005. Fatigue Testing and Analysis (Theory and Practice), Elsevier Butterworth-Heinemann, USA.
Google Scholar
[17]
Smith, K. N., Watson, P., Topper, T. H., 1970. A Stress Strain Function for the Fatigue of Metals, Journal of Materials, ASTM, Vol. 5, No. 4, 99. 767 – 778.
Google Scholar
[18]
Walker, K., 1970. The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum, Effect of Environment and Complex Load History on Fatigue Life, ASTM STP 462, Am. Soc. For Testing and Materials, West Conshohocken, PA, pp.1-14.
DOI: 10.1520/stp32032s
Google Scholar
[19]
Berkovits, A., Fang, D., 1981. An analytical master curve for Goodman diagram data, Int. J. Fatigue, 15, pp.173-80.
DOI: 10.1016/0142-1123(93)90174-o
Google Scholar
[20]
Kwofie, S., 2001. An exponential stress function for predicting fatigue strength and life due to mean stresss, Int. J. Fatigue, 23, pp.829-836.
DOI: 10.1016/s0142-1123(01)00044-5
Google Scholar
[21]
Oliveira, F., Ferreira, J. L. A., Araújo, J. A., 2009. Determinação da Resistência à Fadiga do Aço ASTM A743 - CA6NM - Tomo 3 - Efeito da Presença da Tensão Média Sobre a Vida em Fadiga. Universidade de Brasília.
DOI: 10.17771/pucrio.acad.25155
Google Scholar
[22]
Allvac, 2002. An Allegheny Technologies Company, Catalogue.
Google Scholar
[23]
American society for testing and materials. ASTM 739 E. 2004. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (e-N) fatigue data. s. l.: ASTM International.
Google Scholar
[24]
Gunawarman, Niinomi, M., Akahori, T., Souma, T., Ikeda, M., Toda, H., Terashima, K. 2005. Fatigue Characteristics of Low Cost beta Titanium Alloys for Healthcare and Medical Applications. Materials Transactions, Vol. 46, pp.1570-1577. n. 7.
DOI: 10.2320/matertrans.46.1570
Google Scholar
[25]
Ruppen, J., Bhowal, P., Eylon, D., Macevely, A. J. 1979. ASTM STP. On the process of subsurface fatigue crack initiation in Ti–6Al–4V. p.47–68.
DOI: 10.1520/stp35884s
Google Scholar
[26]
Taylor, D. march of 1998. Fatigue of bone and bones: An analysis based on stressed volume. Journal of Bone and Joint Surgery, Inc. Jornal of orthopaedic research, Vol. 16, pp.163-9. 2.
DOI: 10.1002/jor.1100160203
Google Scholar
[27]
Niinomi, M., Kim, J. H., Akahori, T., Takeda, J., Toda, H. 2005. Effect of microstructure on fatigue of bovine compacts bone. Japan Society of Mechanical Engineers International Journal, Vol. 48, pp.472-480. n. 4.
DOI: 10.1299/jsmea.48.472
Google Scholar
[28]
Taylor, D., O'Reilly, P., Vallet, L., Lee, T. C. 6 de march of 2003. The fatigue strength of compact bone in torsion. Journal of biomechanics, Vol. 36, pp.1103-1109.
DOI: 10.1016/s0021-9290(03)00104-0
Google Scholar
[29]
Sakaguchi, N., Niinomi, M., Akahori, T., Takeda, J., Toda, H. 12 de maio de 2005. Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Materials Science and Engineering C, Vol. 25, pp.363-369.
DOI: 10.1016/j.msec.2004.12.014
Google Scholar
[30]
Li, S. J., Cui, T. C., Hao, Y. L. , Yang, R. October 7 of 2008. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. Acta Biomaterialia, Vol. 4, pp.305-317.
DOI: 10.1016/j.actbio.2007.09.009
Google Scholar
[31]
Lia, J. P., Habibovic, P., Doel, M. V. D. C., Wilson, E., Wijn, J. R., Blitterswijk, C. A., Groot, K. 16 de Fevereiro de 2007. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, Vol. 28, pp.2810-20.
DOI: 10.1016/j.biomaterials.2007.02.020
Google Scholar