Influence of Heat Treatment on Fatigue Resistance of Sintered Ti 35Nb 7Zr 5Ta β Alloy

Article Preview

Abstract:

Mean stress on fatigue strength of Ti-35Nb-7Zr-5Ta, used in the manufacture of orthopedic prosthesis, was evaluated. Samples of Ti-35Nb-7Zr-5Ta were pressureless sintered and tested using microhardness (Vickers) and four point bending fatigue apparatus. Characterization was carried out using optical microscopy, scanning electron microscopy, EDS analysis, oxygen analysis and density. The density analysis shows almost 98% of density and microscopy reveals some precipitates of α phase and presumably ω phase at the grain and grain boundaries. The bending fatigue resistance limit reached (Se (106) 88 MPa), due to, presumably, the influence of coarse α phase precipitates at grain boundaries as well as the high oxygen content in the material after sintering (0.96 %). In this study, Kwofie model best explains the influence of mean stress on fatigue strength of this alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1290-1297

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Medeiros, W. S., Oliveira, M. V., Pereira, L. C., Cairo, C. A. A., Calixto, M. A., 2005. Calcium Phosphate Deposition on Porous Titanium Samples. In Fifth International Latin-American Conference on Powder Technology, 2005, Costa do Sauipe. Procedings of Fifth International Latin-American Conference on Powder Technology; Metallum Eventos Técnicos Científicos, Bahia, Brazil, v. CD.

Google Scholar

[2] Oliveira, M. V., Moreira, A. C., Appoloni, C. R., Lopes, R. T., Pereira, L. C., Cairo, C. A. A., 2005. Porosity Study of Sintered Titanium Foams. In Fifth International Latin-American Conference on Powder Technology, Costa do Sauipe. Procedings of Fifth International Latin-American Conference on Powder Technology; Metallum Eventos Técnicos Científicos, Bahia, Brazil.

Google Scholar

[3] German, M. R., 1996. Sintering Theory and practice. By Jhon Wiley & sons, inc.

Google Scholar

[4] Banerjee, R., Nag, S., Fraser, H., 2005. A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Materials Science and Engineering C; 25: 282-289.

DOI: 10.1016/j.msec.2004.12.010

Google Scholar

[5] Niinomi, M., 2003. Fatigue performance and cytotoxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4. 6Zr. Biomaterials. 24 (16): 2673-2683.

DOI: 10.1016/s0142-9612(03)00069-3

Google Scholar

[6] Katti, K. S., 2004. Biomaterials in total joint replacement, Colloids and Surfaces B. Biointerfaces 39 (3): 133-142.

DOI: 10.1016/j.colsurfb.2003.12.002

Google Scholar

[7] Geetha, M., Kamachi, M. U., Gogia, A. K., Asokamani, R., Raj, B., 2004. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corrosion Science; 46(4): 877-892.

DOI: 10.1016/s0010-938x(03)00186-0

Google Scholar

[8] Niinomi, M., 2002. Recent metallic materials for biomedical applications. Metal Mater. Trans. A; 33A: 477–86.

Google Scholar

[9] Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., Yashiro, T. 1998. Design and mechanical properties of new β type titanium alloys for implant materials. Mat. Sci. Eng. A; A 243: 244–9.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar

[10] Kuroda, D., Niinomi, M., Fukui, H., Suzuki, A., Hasegawa, S., 2001. Mechanical performance of newly developed β -type titanium alloy, Ti–29Nb–13Ta–4. 6Zr, for biomedical applications. In: Niinomi, M., Okabe, T., Taleff, E. M., Lesure, D. R., Lippard, H. E., editors. Structural biomaterials for the 21st century. Warrendale: TMS, p.99.

DOI: 10.1016/s0142-9612(03)00069-3

Google Scholar

[11] Niinomi, M., Kuroda, D., Fukunaga, K., Morinaga, M., Kato, Y., Yashiro, T., Suzuki, A., 1999. Corrosion wear fracture of new β type biomedical titanium alloys. Mat. Sci. Eng. A; A263: 193–9.

DOI: 10.1016/s0921-5093(98)01167-8

Google Scholar

[12] Akahori, T., Niinomi, M., Yabunaka, T., Kuroda, D., Fukui, H., Suzuki, A., Hasegawa, J., 2001. Fretting fatigue characteristics of biomedical new b titanium alloy, Ti–29Nb–13Ta–4. 6Zr. In: Hanada, S., Zhong, Z., Nam, S. W., Wright, R. N., editors. Proceedings of the PRICM 4: The Jpn. Inst. Metals, p.209.

DOI: 10.1299/jsmeatem.2003.2._os07w0142

Google Scholar

[13] Taddei, E. B., 2007. Obtenção da liga Ti 35Nb 7Zr 5Ta por metalurgia do pó para utilização em próteses ortopédicas. Tesis de Doutorado. Campo Montenegro, São José dos Campos, SP- Brasil.

DOI: 10.1590/s1517-70762007000100015

Google Scholar

[14] Steinemann, S. G., 1980. Corrosion of surgical implants in vivo and in vitro tests. In: Winter, G. D., Leray, J. L., De Groot K, editors. Evaluation of biomaterials. NewYork: Wiley, p.1–34.

Google Scholar

[15] Kawahara, H., Ochi, S., Tanetani, K., Kato, K., Isogai, M., Mizuno, Y., Yamamoto, H., Yamaguchi, A., 1963. Biological test of dental materials, Effect of pure metals upon the mouse subcutaneous fibroblast, strain L cell in tissue culture. J. Jpn. Soc. Dent. Apparat. Mater; 4: 65–75.

Google Scholar

[16] Lee, Y-L., Pan, J., Hathaway, R., Barkey, M. E., 2005. Fatigue Testing and Analysis (Theory and Practice), Elsevier Butterworth-Heinemann, USA.

Google Scholar

[17] Smith, K. N., Watson, P., Topper, T. H., 1970. A Stress Strain Function for the Fatigue of Metals, Journal of Materials, ASTM, Vol. 5, No. 4, 99. 767 – 778.

Google Scholar

[18] Walker, K., 1970. The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum, Effect of Environment and Complex Load History on Fatigue Life, ASTM STP 462, Am. Soc. For Testing and Materials, West Conshohocken, PA, pp.1-14.

DOI: 10.1520/stp32032s

Google Scholar

[19] Berkovits, A., Fang, D., 1981. An analytical master curve for Goodman diagram data, Int. J. Fatigue, 15, pp.173-80.

DOI: 10.1016/0142-1123(93)90174-o

Google Scholar

[20] Kwofie, S., 2001. An exponential stress function for predicting fatigue strength and life due to mean stresss, Int. J. Fatigue, 23, pp.829-836.

DOI: 10.1016/s0142-1123(01)00044-5

Google Scholar

[21] Oliveira, F., Ferreira, J. L. A., Araújo, J. A., 2009. Determinação da Resistência à Fadiga do Aço ASTM A743 - CA6NM - Tomo 3 - Efeito da Presença da Tensão Média Sobre a Vida em Fadiga. Universidade de Brasília.

DOI: 10.17771/pucrio.acad.25155

Google Scholar

[22] Allvac, 2002. An Allegheny Technologies Company, Catalogue.

Google Scholar

[23] American society for testing and materials. ASTM 739 E. 2004. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (e-N) fatigue data. s. l.: ASTM International.

Google Scholar

[24] Gunawarman, Niinomi, M., Akahori, T., Souma, T., Ikeda, M., Toda, H., Terashima, K. 2005. Fatigue Characteristics of Low Cost beta Titanium Alloys for Healthcare and Medical Applications. Materials Transactions, Vol. 46, pp.1570-1577. n. 7.

DOI: 10.2320/matertrans.46.1570

Google Scholar

[25] Ruppen, J., Bhowal, P., Eylon, D., Macevely, A. J. 1979. ASTM STP. On the process of subsurface fatigue crack initiation in Ti–6Al–4V. p.47–68.

DOI: 10.1520/stp35884s

Google Scholar

[26] Taylor, D. march of 1998. Fatigue of bone and bones: An analysis based on stressed volume. Journal of Bone and Joint Surgery, Inc. Jornal of orthopaedic research, Vol. 16, pp.163-9. 2.

DOI: 10.1002/jor.1100160203

Google Scholar

[27] Niinomi, M., Kim, J. H., Akahori, T., Takeda, J., Toda, H. 2005. Effect of microstructure on fatigue of bovine compacts bone. Japan Society of Mechanical Engineers International Journal, Vol. 48, pp.472-480. n. 4.

DOI: 10.1299/jsmea.48.472

Google Scholar

[28] Taylor, D., O'Reilly, P., Vallet, L., Lee, T. C. 6 de march of 2003. The fatigue strength of compact bone in torsion. Journal of biomechanics, Vol. 36, pp.1103-1109.

DOI: 10.1016/s0021-9290(03)00104-0

Google Scholar

[29] Sakaguchi, N., Niinomi, M., Akahori, T., Takeda, J., Toda, H. 12 de maio de 2005. Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Materials Science and Engineering C, Vol. 25, pp.363-369.

DOI: 10.1016/j.msec.2004.12.014

Google Scholar

[30] Li, S. J., Cui, T. C., Hao, Y. L. , Yang, R. October 7 of 2008. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. Acta Biomaterialia, Vol. 4, pp.305-317.

DOI: 10.1016/j.actbio.2007.09.009

Google Scholar

[31] Lia, J. P., Habibovic, P., Doel, M. V. D. C., Wilson, E., Wijn, J. R., Blitterswijk, C. A., Groot, K. 16 de Fevereiro de 2007. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, Vol. 28, pp.2810-20.

DOI: 10.1016/j.biomaterials.2007.02.020

Google Scholar