[1]
H.K.D.H. Bhadeshia and D.V. Edmonds, The bainite transformation in a silicon steel, Metall. Trans. A. 10(1997)895-907.
DOI: 10.1007/bf02658309
Google Scholar
[2]
T. Yokoi, K. Kawasaki, M. Takahashi, K. Koyoma and M. Mizui, Fatigue properties of high strength steels containing retained austenite. JSAE Review. 17. 2(1996)210-212.
DOI: 10.1016/0389-4304(95)00063-1
Google Scholar
[3]
K. Sugimoto, N. Ushi, M. Kobayashi and S. Hashimoto, Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels, ISIJ. 32(1992)1311-1318.
DOI: 10.2355/isijinternational.32.1311
Google Scholar
[4]
K. Sugimoto, N. Ushi, M. Kobayashi and S. Hashimoto, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel, Metall. Trans.A. 23(1992)3085-3091.
DOI: 10.1007/bf02646127
Google Scholar
[5]
H.C. Chen, H. Era and M. Shimizu, Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet, Metall. Trans.A. 20(1989)437-445.
DOI: 10.1007/bf02653923
Google Scholar
[6]
C.G. Lee and S.J. Kim, Microstructures and mechanical properties of high strength hot-rolled steel plates containing tramp elements, J. Kor. Inst. Met. Mater. 1998; 36. 7(1998) 1024-1031.
Google Scholar
[7]
G. Frommeyer, U. Brux, P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ. 43(2003)438-446.
DOI: 10.2355/isijinternational.43.438
Google Scholar
[8]
K. Sugimoto, B. Yu, Y. Mukai, S. Ikeda, Microstructure and Formability of Aluminum Bearing TRIP-Aided Steels with Annealed Martensite Matrix, ISIJ. 45(2005)1194-1200.
DOI: 10.2355/isijinternational.45.1194
Google Scholar
[9]
L. Bracke, K. Verbeken, L. Kestens andJ. Penning, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel, Acta Mater. 57(2009)1512-1524.
DOI: 10.1016/j.actamat.2008.11.036
Google Scholar
[10]
A. A. Gazder, W. Q. Cao, C. H. J. Davies, E. V. Pereloma, An EBSD investigation of interstitial-free steel subjected to equal channel angular extrusion, Mater. Sci. Eng.A. 497(2008)341-352.
DOI: 10.1016/j.msea.2008.07.030
Google Scholar
[11]
K.X. Tao, H. Choo, and H.Q. Li, Transformation-induced plasticity in an ultrafine-grained steel: An in situ neutron diffraction study, Appl. Phys. Let. 90(2007)101911 - 101911-3.
DOI: 10.1063/1.2711758
Google Scholar
[12]
Chang Gil Lee, Sung-Joon Kim, Tae-Ho Lee, Sunghak Lee, Effects of volume fraction and stability of retained austenite on formability in a 0. 1C–1. 5Si–1. 5Mn–0. 5Cu TRIP-aided cold-rolled steel sheet, Mater. Sci. Eng.A. 371(2004)16-23.
DOI: 10.1016/s0921-5093(03)00035-2
Google Scholar
[13]
X.D. Wang a, B.X. Huang, Y.H. Rong, L. Wang, Microstructures and stability of retained austenite in TRIP steels, Mater. Sci. Eng.A. 438-440(2006)300-305.
DOI: 10.1016/j.msea.2006.02.149
Google Scholar
[14]
Arif Basuki, Etienne Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology. 89-90(1999)37-43.
DOI: 10.1016/s0924-0136(99)00037-0
Google Scholar
[15]
N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, S. van der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater. 53(2005)5439-5447.
DOI: 10.1016/j.actamat.2005.08.017
Google Scholar
[16]
V. F. Zackay, E. R. Parker, D. Fahr, R. Busch, The enhancement of ductility in high-strength steels, ASM Trans Quart. 60(1967)252-259.
Google Scholar
[17]
W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong, Microstructure and mechanical properties of Fe–0. 2C–5Mn steel processed by ART-annealing, Mater. Sci. Eng. A, 528(2011) 6661-6666.
DOI: 10.1016/j.msea.2011.05.039
Google Scholar
[18]
H.C. Shin, T.K. Ha and Y.W. Chang, A study on the deformation induced martensitic transformation of 304 stainless steel, J. Kor. Inst. Met. Mater. 34. 12(1996)1550-1557.
Google Scholar