Study on the Mechanical Stability of Retained Austenite in Cold-Rolled Medium-Mn Steel

Article Preview

Abstract:

The mechanical stability of the retained austenite in the cold-rolled medium-Mn steel was studied. Tensile tests were carried out to measure the mechanical properties of the annealed steel. Scanning electron microscopy was applied to characterize the microstructure evolution during the tensile process; X-ray diffraction analysis was used to determine the residual austenite content in the deformed steel. It was found that the volume fraction of retained austenite gradually decreases with strain .The value of the stability coefficient of retained austenite k was small in the test steel, which indicated high mechanical stability of retained austenite. Due to TRIP effect, the high mechanical stability of the retained austenite strongly delays the onset of necking, which resulted in good comprehensive mechanical properties with ultrahigh strength and plasticity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1283-1289

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.K.D.H. Bhadeshia and D.V. Edmonds, The bainite transformation in a silicon steel, Metall. Trans. A. 10(1997)895-907.

DOI: 10.1007/bf02658309

Google Scholar

[2] T. Yokoi, K. Kawasaki, M. Takahashi, K. Koyoma and M. Mizui, Fatigue properties of high strength steels containing retained austenite. JSAE Review. 17. 2(1996)210-212.

DOI: 10.1016/0389-4304(95)00063-1

Google Scholar

[3] K. Sugimoto, N. Ushi, M. Kobayashi and S. Hashimoto, Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels, ISIJ. 32(1992)1311-1318.

DOI: 10.2355/isijinternational.32.1311

Google Scholar

[4] K. Sugimoto, N. Ushi, M. Kobayashi and S. Hashimoto, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel, Metall. Trans.A. 23(1992)3085-3091.

DOI: 10.1007/bf02646127

Google Scholar

[5] H.C. Chen, H. Era and M. Shimizu, Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet, Metall. Trans.A. 20(1989)437-445.

DOI: 10.1007/bf02653923

Google Scholar

[6] C.G. Lee and S.J. Kim, Microstructures and mechanical properties of high strength hot-rolled steel plates containing tramp elements, J. Kor. Inst. Met. Mater. 1998; 36. 7(1998) 1024-1031.

Google Scholar

[7] G. Frommeyer, U. Brux, P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ. 43(2003)438-446.

DOI: 10.2355/isijinternational.43.438

Google Scholar

[8] K. Sugimoto, B. Yu, Y. Mukai, S. Ikeda, Microstructure and Formability of Aluminum Bearing TRIP-Aided Steels with Annealed Martensite Matrix, ISIJ. 45(2005)1194-1200.

DOI: 10.2355/isijinternational.45.1194

Google Scholar

[9] L. Bracke, K. Verbeken, L. Kestens andJ. Penning, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel, Acta Mater. 57(2009)1512-1524.

DOI: 10.1016/j.actamat.2008.11.036

Google Scholar

[10] A. A. Gazder, W. Q. Cao, C. H. J. Davies, E. V. Pereloma, An EBSD investigation of interstitial-free steel subjected to equal channel angular extrusion, Mater. Sci. Eng.A. 497(2008)341-352.

DOI: 10.1016/j.msea.2008.07.030

Google Scholar

[11] K.X. Tao, H. Choo, and H.Q. Li, Transformation-induced plasticity in an ultrafine-grained steel: An in situ neutron diffraction study, Appl. Phys. Let. 90(2007)101911 - 101911-3.

DOI: 10.1063/1.2711758

Google Scholar

[12] Chang Gil Lee, Sung-Joon Kim, Tae-Ho Lee, Sunghak Lee, Effects of volume fraction and stability of retained austenite on formability in a 0. 1C–1. 5Si–1. 5Mn–0. 5Cu TRIP-aided cold-rolled steel sheet, Mater. Sci. Eng.A. 371(2004)16-23.

DOI: 10.1016/s0921-5093(03)00035-2

Google Scholar

[13] X.D. Wang a, B.X. Huang, Y.H. Rong, L. Wang, Microstructures and stability of retained austenite in TRIP steels, Mater. Sci. Eng.A. 438-440(2006)300-305.

DOI: 10.1016/j.msea.2006.02.149

Google Scholar

[14] Arif Basuki, Etienne Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology. 89-90(1999)37-43.

DOI: 10.1016/s0924-0136(99)00037-0

Google Scholar

[15] N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, S. van der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater. 53(2005)5439-5447.

DOI: 10.1016/j.actamat.2005.08.017

Google Scholar

[16] V. F. Zackay, E. R. Parker, D. Fahr, R. Busch, The enhancement of ductility in high-strength steels, ASM Trans Quart. 60(1967)252-259.

Google Scholar

[17] W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong, Microstructure and mechanical properties of Fe–0. 2C–5Mn steel processed by ART-annealing, Mater. Sci. Eng. A, 528(2011) 6661-6666.

DOI: 10.1016/j.msea.2011.05.039

Google Scholar

[18] H.C. Shin, T.K. Ha and Y.W. Chang, A study on the deformation induced martensitic transformation of 304 stainless steel, J. Kor. Inst. Met. Mater. 34. 12(1996)1550-1557.

Google Scholar