Polymer-Tethered pH-Sensitive Magnetic Nanoparticles for Targeted Delivery of Anti-Cancer Drug

Article Preview

Abstract:

Efficient delivery of drug to tumor cells is one of the crucial issues in cancer therapy. This letter addresses for the first time that poly (acrylic acid) (PAA), a pH-sensitive polymer, is tethered to the surface of the nanoparticles by chemical grafting. The release rates of doxorubicin (DOX) are subsequently studied in vitro. The results reveal that DOX can be released preferentially at the desired lysosomal pH, and show that the anti-cancer drug carrier can be applied to the biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

723-727

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shivang R. Dave1, X. Gao, Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology, Nanobiotechnol. 1 (2009) 583–609.

DOI: 10.1002/wnan.51

Google Scholar

[2] S. Nie, Y. Xing, G.J. Kim, J.W. Simons, Nanotechnology Applications in Cancer, Annu Rev Biomed Eng. 9 (2007) 257-288.

DOI: 10.1146/annurev.bioeng.9.060906.152025

Google Scholar

[3] C. Xu, S. Sun, Monodisperse magnetic nanoparticles for biomedical applications, Polym. Int. 56 (2007) 821-826.

DOI: 10.1002/pi.2251

Google Scholar

[4] E.R. Gillies, J.M.J. Fréchet, pH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin, Bioconjugate Chem. 16 (2005) 361-368.

DOI: 10.1021/bc049851c

Google Scholar

[5] S. Kumar, Y.L. Dory, M. Lepage, Y. Zhao, Surface-Grafted Stimuli-Responsive Block Copolymer Brushes for the Thermo-, Photo- and pH-Sensitive Release of Dye Molecules, Macromolecules 44 (2011) 7385-7393.

DOI: 10.1021/ma2010102

Google Scholar

[6] Y. Chang, X. Meng, Y. Zhao, K. Li, B. Zhao, M. Zhu, Y. Li, X. Chen, J. Wang, Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin–PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs), Journal of Colloid and Interface Science 363 (2011).

DOI: 10.1016/j.jcis.2011.06.086

Google Scholar

[7] A. Sulistio, J. Lowenthal, A. Blencowe, M.N. Bongiovanni, L. Ong, S.L. Gras, X. Zhang, G.G. Qiao, Folic Acid Conjugated Amino Acid-Based Star Polymers for Active Targeting of Cancer Cells, Biomacromolecules 12 (2011) 3469-3477.

DOI: 10.1021/bm200604h

Google Scholar

[8] X. Yang, W. Jiang, L. Liu, B. Chen, S. Wu, D. Sun, F. Li, One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles, J. Magn. Magn. Mater. 324 (2012) 2249-2257.

DOI: 10.1016/j.jmmm.2012.02.111

Google Scholar

[9] O. Moscoso-Londoño, J.S. Gonzalez, D. Muraca, C.E. Hoppe, V.A. Alvarez, A. López-Quintela, L.M. Socolovsky, K.R. Pirota, Structural and magnetic behavior of ferrogels obtained by freezing thawing of polyvinyl alcohol/poly(acrylic acid) (PAA)-coated iron oxide nanoparticles, Eur. Polym. J. 49 (2013).

DOI: 10.1016/j.eurpolymj.2012.11.007

Google Scholar

[10] L. Zhou, J. Yuan, W. Yuan, X. Sui, S. Wu, Z. Li, D. Shen, Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles, J. Magn. Magn. Mater. 321 (2009) 2799-2804.

DOI: 10.1016/j.jmmm.2009.04.020

Google Scholar

[11] B. Gaihre, M. Khil, D. Lee, H. Kim, Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study, Int. J. Pharm. 365 (2009) 180-189.

DOI: 10.1016/j.ijpharm.2008.08.020

Google Scholar