A Facile Method to Synthesize Responsive Magnetic Polymer Composite Nanoparticles with Multifunctional Groups

Article Preview

Abstract:

Magnetite nanoparticles (MNPs) coated with poly (divinylbenzene-co-glycidyl methacrylate) particles (mPDGs) are prepared by co-polymerization of 1,4-divinylbenzene and glycidyl methacrylate monomers via batch emulsion polymerization. The Fe3O4 nanoparticles modified by oleic acid are obtained by chemical precipitation. The chemical composition, morphology, magnetic content, magnetic properties and particle size of the composite particles are investigated using transmission electron microscopy, thermogravimetric analysis, vibrating sample magnetometer, and dynamic light scattering, respectively. The results show that the magnetic nanoparticles have been coated by 1,4-divinylbenzene and glycidyl methacrylate, with the high saturation magnetization being 33.66 emu/g. The mean size of the mPDGs with good dispersion is about 200 nm. Subsequently, the polymer shell with reactive epoxy group is expected to be useful for chemical grafting of any biomolecule containing reactive functional groups (-NH2, -OH, -COOH, etc) or can be chemically modified to desired functional groups. These magnetic nanospheres with multifunctional groups have potential application in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

734-739

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. S. Lübbe, C. Alexiou, C. Bergemann, Clinical applications of magnetic drug targeting, J. Surgical Res. 95 (2001) 200-206.

DOI: 10.1006/jsre.2000.6030

Google Scholar

[2] H. Maeda, J. Wu, T. Sawa, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Controlled Release. 65 (2000) 271-284.

DOI: 10.1016/s0168-3659(99)00248-5

Google Scholar

[3] S. Dietrich, S. Chandra, C. Georgi, Design, characterization and magnetic properties of Fe3O4-nanoparticle arrays coated with PEGylated-dendrimers, Mater. Chem. Phys. 132 (2012) 292-299.

DOI: 10.1016/j.matchemphys.2011.11.015

Google Scholar

[4] Y. Wang, H-J. Kim, G. Vunjak-Novakovic, Stem cell-based tissue engineering with silk biomaterials, Biomaterials. 27 (2006) 6064-6082.

DOI: 10.1016/j.biomaterials.2006.07.008

Google Scholar

[5] J. K. Oh, J. M. Park, Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application, Prog. Polym. Sci. 36 (2011) 168-189.

DOI: 10.1016/j.progpolymsci.2010.08.005

Google Scholar

[6] M. Lattuada, T. A. Hatton, Functionalization of monodisperse magnetic nanoparticles, Langmuir. 23 (2007) 2158-2168.

DOI: 10.1021/la062092x

Google Scholar

[7] X. Shi, T. P. Thomas, L. A. Myc, Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles, PCCP. 9 (2007) 5712-5720.

DOI: 10.1039/b709147h

Google Scholar

[8] X. Liu, Q. Dai, L. Austin, A One-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering, J. Amer. Chem. Soc. 130 (2008) 2780-2782.

DOI: 10.1021/ja711298b

Google Scholar

[9] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R182.

DOI: 10.1088/0022-3727/36/13/202

Google Scholar

[10] R. Hidalgo-Álvarez, Structure and functional properties of colloidal systems, CRC Press, (2010).

Google Scholar

[11] W. Zheng, F. Gao, H. Gu, Carboxylated magnetic polymer nanolatexes: Preparation, characterization and biomedical applications, J. Magn. Magn. Mater. 293 (2005) 199-205.

DOI: 10.1016/j.jmmm.2005.01.082

Google Scholar

[12] S. S. Lee, K. Y. Park, J. Y. Kim, Effect of GMA on monodisperse epoxy-functionalized polymer microsphere particles by dispersion copolymerization of styrene with glycidyl methacrylate, J. Appl. Polym. Sci. 80 (2001) 1206-1212.

DOI: 10.1002/app.1205

Google Scholar

[13] R. A. Ramli, S. Hashim, W. A. Laftah, Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) raspberry, -shape like structure microgels by pre-emulsified semi-batch emulsion polymerization, J. Colloid Interface Sci. 391 (2013).

DOI: 10.1016/j.jcis.2012.09.047

Google Scholar

[14] F. Montagne, O. Mondain-Monval, C. Pichot, Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions, J. Polym. Sci. Part A: Polym. Chem. 44 (2006) 2642-2656.

DOI: 10.1002/pola.21391

Google Scholar

[15] J. Zhang, D. Yu, W. Chen, Preparation of poly(styrene-glucidylmethacrylate)/Fe3O4 composite microspheres with high magnetite contents, J. Magn. Magn. Mater. 321 (2009) 572-577.

DOI: 10.1016/j.jmmm.2008.08.093

Google Scholar

[16] M. M. Eissa, M. Rahman, N. Zine, Reactive magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles for specific antigen detection using microcontact printing technique, Acta biomaterialia. 9 (2013) 5573-5582.

DOI: 10.1016/j.actbio.2012.10.027

Google Scholar

[17] V. R. Babu, M. Sairam, K. M. Hosamani, Development of 5-fluorouracil loaded poly(acrylamide-co-methylmethacrylate) novel core-shell microspheres: In vitro release studies, Int. J. Pharm. 325 (2006) 55-62.

DOI: 10.1016/j.ijpharm.2006.06.020

Google Scholar

[18] T. Begam, R. Tomar, A. Nagpal, Synthesis of poly(acrylamide-co-methyl methacrylate-co-vinyl amine-co-acrylic acid) hydrogels by Hoffman degradation and their interactions with acetaminophen, J. Appl. Polym. Sci. 94 (2004) 40-52.

DOI: 10.1002/app.20706

Google Scholar

[19] S. Wu, W. Jiang, Z. Sun, Preparation of novel magnetic fluorescent nanospheres by sonochemical method, J. Magn. Magn. Mater. 323 (2011) 2170-2173.

DOI: 10.1016/j.jmmm.2011.03.025

Google Scholar