Towards Enhanced Bioactivity: Calcium Ion-Doped Polypyrrole

Article Preview

Abstract:

Based on the unique redox property of electrically conductive polymers, Ca2+ was incorporated into polypyrrole (PPy) film that previously doped with polyelectrolyte heparin. Then the apatite-forming ability of the Ca2+-doped PPy was examined by a biomimetic method using stimulated body fluid (SBF), which has ion concentration nearly equal to those of human blood plasma. It was found that the Ca2+-doped PPy successfully formed bonelike apatite deposition on its surface after soaking in SBF for only 3 days, whereas the similar apatite deposition was formed on Ca2+-free PPy after soaking in SBF for 7 days. These indicated that the entrapment of Ca2+ into PPy could accelerate the formation of apatite deposition and the Ca2+-doped PPy was possessed of enhanced bioactivity. It is expected that the Ca2+-doped PPy would be a useful bioactive coating material of metallic medical devices or tissue engineering scaffolds to promote the bone tissue regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

1168-1173

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Garner, A. Georgevich, A.J. Hodgson, L. Liu and G.G. Wallace. J Biomed Mater Res, Vol. 44 (1999), p.121.

Google Scholar

[2] J.H. Collier, J.P. Camp, T.W. Hudson and C.E. Schmidt. J Biomed Mater Res, Vol. 50 (2000), p.74.

Google Scholar

[3] E. De Giglio, L. Sabbatini, S. Colucci and G. Zambonin: J Biomater Sci Polym Ed, Vol. 11 (2000), p.1073.

Google Scholar

[4] H. Castano, E.A. O'Rear, P.S. McFetridge and V.I. Sikavitsas: Macromol Biosci, Vol. 4 (2004), p.785.

Google Scholar

[5] J. Wang, and M. Jiang: Langmuir, Vol. 16 (2000), p.2269.

Google Scholar

[6] L. Cen, K.G. Neoh and E.T. Kang: Langmuir, Vol 18 (2002), p.8633.

Google Scholar

[7] D. Zhou, C.O. Too, G.G. Wallace, A.M. Hodges and A.W.H. Mau: React Funct Polym, Vol. 45 (2000), p.217.

Google Scholar

[8] X. Yang, C.O. Too, L. Sparrow, J. Ramshaw and G.G. Wallace: React Funct Polym, Vol. 53 (2002), p.53.

Google Scholar

[9] D. Zhou, C.O. Too and G.G. Wallace: React Funct Polym, Vol. 39 (1999), p.19.

Google Scholar

[10] E. De Giglio, M.R. Guascito, L. Sabbatini and G. Zamboin: Biomaterials, Vol. 22 (2000), p.2609.

Google Scholar

[11] E. De Giglio, L. Sabbatini and P.G. Zambonin: J Biomater Sci Polym Edn, Vol. 10 (1999), p.845.

Google Scholar

[12] E. De Giglio, C.D. Calvano, I. Losito, L. Sabbatini, P.G. Zambonin, A. Torrisi and A. Licciardello: Surf Int Anal, Vol. 37 (2005), p.580.

DOI: 10.1002/sia.2053

Google Scholar

[13] Z.Z. Jiang, D.T. Ge, W. Shi and Q.Q. Zhang: Synth Met, Vol. 151 (2005), p.152.

Google Scholar

[14] T. Kawai, C. Ohtsuki, M. Kamitakahara, T. Miyazaki, M. Tanihara, Y. Sakaguchi and S. Konagaya: Biomaterials, Vol. 25 (2004), p.4529.

DOI: 10.1016/j.biomaterials.2003.11.039

Google Scholar

[15] Q. Liu, J. Ding, F.K. Mante, S.L. Wunder and G.R. Baran: Biomaterials, Vol. 23 (2002), p.3103.

Google Scholar

[16] H.M. Kim, K. Kishimoto, F. Miyaji, T. Kokubo, T. Nakamura, T. Yao, Y. Suetsugu, J. Tanaka and T. Nakamura: J Biomed Mater Res, Vol. 46 (1999), p.228.

DOI: 10.1002/(sici)1097-4636(199908)46:2<228::aid-jbm12>3.0.co;2-j

Google Scholar

[17] Y. Chen, A.F.T. Mak , J.S. Li , M. Wang and A.W.T. Shum: J Biomed Mater Res Part B: Apl Biomater, Vol. 73B (2005), p.68.

Google Scholar

[18] K. Idla, O. Inganas and M. Strandberg: Electrochim Acta, Vol. 45 (2000), p.2121.

Google Scholar

[19] A. Oyane, H.M. Kim , T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura: J Biomed Mater Res, Vol. 65A (2000), p.74.

Google Scholar

[20] E. Smela: Adv Mater, Vol. 15 (2003), p.481.

Google Scholar