Magnetic Pulse Welding by Electromagnetic Compression: Determination of the Impact Velocity

Article Preview

Abstract:

The implementation of multi-material concepts and the manufacturing of modern lightweight structures, for example in automotive engineering, require appropriate joining technologies. The ability to join dissimilar materials without additional mechanical elements, chemical binders, or adverse influences of heat on the joining partners is key in reaching the desired weight reduction in engineering structures. The Magnetic Pulse Welding (MPW) process meets these demands, making it a viable alternative to conventional thermal welding and mechanical joining processes. The present paper focuses on the analytical determination of the impact velocity as one of the key parameters of MPW processes. On the basis of experimentally recorded data concerning the course of the discharge current and geometrical parameters of the welding setup, the respective velocity is determined. A comparison with measurement data gained by Photon Doppler Velocimetry is performed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

489-499

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mori, K.; Bay, N.; Fratini, L.; Micari, F.; Tekkaya, A.E.: Joining by plastic deformation, CIRP Annals – Manufacturing Technology, 2013, 62, pp.673-694.

DOI: 10.1016/j.cirp.2013.05.004

Google Scholar

[2] Göbel, G.; Beyer, E.; Kaspar, J.; Brenner, B.: Dissimilar metal joining: Macro- and microscopic effects of MPW, Proceedings of the 5th International Conference on High-Speed Forming, 2012, pp.179-188.

Google Scholar

[3] Psyk, V.; Risch, D.; Kinsey, B.L.; Tekkaya, A.E.; Kleiner, M.: Electromagnetic forming – A review, Journal of Materials Processing Technology, 2011, 211, pp.787-829.

DOI: 10.1016/j.jmatprotec.2010.12.012

Google Scholar

[4] Strand, O.T.; Goosman, D.R.; Martinez, C.; Whitworth, T.L.; Kuhlow, W.W.: Compact system for high-speed velocimetry using heterodyne techniques, Review of Scientific Instruments, 2006, 77 (083108).

DOI: 10.1063/1.2336749

Google Scholar

[5] Jensen, B.J.; Holtkamp, D.B.; Rigg, P.A.; Dolan, D.H.: Accuracy limits and window corrections for photon Doppler velocimetry, Journal of Applied Physics, 2007, 101 (013523).

DOI: 10.1063/1.2407290

Google Scholar

[6] Jäger, A.; Tekkaya, A.E.: Online measurement of the radial workpiece displacement in electromagnetic forming subsequent to hot aluminum extrusion, Proceedings of the 5th International Conference on High-Speed Forming, 2012, pp.13-22.

Google Scholar

[7] Beerwald, C.: Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung, Dr. -Ing. Dissertation, Universität Dortmund, (2005).

Google Scholar

[8] Bühler, H.; Bauer, D.: Ein Beitrag zur Magnetumformung rohrförmiger Werkstücke, Werkstatt und Betrieb, 1968, 9 (101), pp.513-516.

Google Scholar

[9] Dietz, H.; Lippmann, H. J.; Schenk, H.: Theorie des Magneform-Verfahrens: Erreichbarer Druck, ETZ – A, 1967, 88 (09), pp.217-222.

Google Scholar

[10] Dietz, H.; Lippmann, H. J.; Schenk, H.: Theorie des Magneform-Verfahrens: Abgestufter Feldkonzentrator, ETZ – A, 1967, 88 (19), pp.475-480.

Google Scholar

[11] Dietz, H.; Lippmann, H. J.; Schenk, H.: Theorie des Magneform-Verfahrens: Die Bewegung des Werkstücks, ETZ – A, 1968, 89 (12), pp.273-278.

Google Scholar