Structural and Optical Properties of Dy Doped ZnO Film Grown by RF Magnetic Sputter

Article Preview

Abstract:

Zinc oxide (ZnO) and Dysprosium (Dy) doped ZnO nano films have been successfully prepared by radio frequency (RF) magnetron sputter. Then the crystal structure, morphology and optical of the films were investigated. All the samples have a preferred orientation with the (0 0 2) orientation perpendicular to the substrates. The surface morphology of the films changes greatly with the increasing of doping content. Agglomeration appears when the doping content is excess, which may result from the recrystallization of the small crystalline grain. The average transmittance in the visible range all exceeds 80% for the different doping content films and the band gap increases from 3.26eV to 3.34eV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

11-14

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Yan , X. Chen, J.H. Wu: Appl. Surf. Sci. Vol. 253 (2007), p.8575.

Google Scholar

[2] V. Musat, B. Teixeira, E. Fortunato, Monteiro and R.C.C.P. Villarinho: Surf . Coat. Technol. Vol. 180-181 (2004), p.659.

Google Scholar

[3] D. Raviendra, J.K. Sharma: J. Appl. Phys. Vol. 58 (1985), p.838.

Google Scholar

[4] Ü. Özgur et al: J. Appl. Phys. Vol. 98 (2005), p.041301.

Google Scholar

[5] H. Kim, J.S. Horwitz, G.P. Kushto, Z.H. Kafafi, D.B. Chrisey: Appl. Phys. Lett. Vol. 79 (2001), p.284.

Google Scholar

[6] J. Zou, S. Zhou, C. Xia, X. Zhang, F. Su, G. Peng, X. Li, J. Xu: Thin Solid Films Vol. 496 (2006), p.205.

Google Scholar

[7] H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay: J. Cryst. Growth Vol. 268 (2004), p.596.

Google Scholar

[8] C. Y. Hsu and C. H. Tsang: Sol. Energy Mater. Sol. Cells Vol. 92 (2008), p.530.

Google Scholar

[9] M.S. Lv, X.W. Xiu, Z.Y. Pang, Y. Dai, S.H. Han: Appl. Surf. Sci. Vol. 252 (2006), p.5687.

Google Scholar

[10] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe: J. Cryst. Growth Vol. 221 (2000), p.431.

Google Scholar

[11] R.M. Wang, Y.J. Xing, J. Xu, D.P. Yu: New J. Phys. Vol. 5 (2003), p.115.

Google Scholar

[12] L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist: Chem. Mater. Vol. 15(2003), p.305.

Google Scholar

[13] C. Messaoudi, D. Sayah, M. Abd-Lefdil: Phys. Status Solidi A Vol. 151 (1995), p.93.

Google Scholar

[14] M.S. Tokumoto, A. Smith, C.V. Santilli, S.H. Pulcinelli, A.F. Craievich, E. Elkaim, A. Traverse, V. Briois: Thin Solid Films Vol. 416 (2002), p.284.

DOI: 10.1016/s0040-6090(02)00531-x

Google Scholar

[15] M. Ohyama, H. Kozuka, T. Yoko: Thin Solid Films Vol. 306 (1) (1997), p.78.

Google Scholar

[16] G.K. Paul, S.B. Bandyopadhyay, S.K. Sen, et al: Mater. Chem. Phys. Vol. 79 (2003), p.71.

Google Scholar

[17] J.L. Sommerdijk, A. Bril: J. Electronchem. Soc. Vol. 22 (1975), p.952.

Google Scholar

[18] G. Feng, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan: Langmuir Vol. 20 (2004), p.3528.

Google Scholar

[19] H.M. Huang, Y.J. Ou, S. Xu, X.Z. Zhao: Appl. Surf. Sci. Vol. 254 (2008), p. (2013).

Google Scholar

[20] Q.H. Bao, C.H. Chen, D.G. Wang, Q.M. Ji, T.Q. Lei: Appl. Surf. Sci. Vol. 252 (2005), p.1538.

Google Scholar

[21] N. Serpone, D. Lawless, R. Khairutdinov: J. Phys. Chem. Vol. 99 (1995), p.16646.

Google Scholar