The Crystal Structural Properties of Sputtered ZnO Films Containing Internal Stress

Article Preview

Abstract:

The ZnO films were deposited on Si substrate by radio frequency (RF) magnetron sputtering. The effects of the Ar/O2 ratios on the structural characteristics and the internal stress in the ZnO films have been studied. The SEM images shows that the ZnO grains are nano-sized and tightly packed. The ZnO films are highly c-axis oriented with the (002) plane parallel to the substrate. The samples has a stress of the order of 1.0 × 1010 dyn/cm2. It is found that the size of ZnO crystal grains distinctly depends on the stress in the ZnO films. In order to deposite ZnO films with good crystalline quality, the stress caused by the growth process can be depressed by adjusting the Ar/O2 ratios.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

28-31

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. Chen, Y. Lu: Appl. Phys. Lett. Vol. 85 (2004), p.3702.

Google Scholar

[2] E. Fortunato, A. Goncalves, A. Marques, A. Pimentel, P. Barquinha, H. A´ guas, L. Pereira, L. Raniero, G. Goncalves, I. Ferreira, R. Martins: Mater. Sci. Forum Vol. 514-516 (2006), p.3.

DOI: 10.4028/www.scientific.net/msf.514-516.3

Google Scholar

[3] Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li: Appl. Phys. Lett. Vol. 93 (2008), p.163501.

Google Scholar

[4] M. Pan, W. E. Fenwick, W. Strassburg, N. Li, H. Kang, M. H. Kane, A. Asghar, S. Gupta, R. Varatharajan, J. Nause, N. El-Zein, P. Fabiano, T. Steiner, I. Ferguson:J. Cryst. Gr. Vol. 287 (2006), p.688.

DOI: 10.1016/j.jcrysgro.2005.10.093

Google Scholar

[5] C. D. Bojorge, H. R. Canepa, U. E. Gilabert, D. Silva, E. A. Dalchiele, R. E. Marotti:J. Mater. Sci: Mater. Electron. Vol. 18 (2007), p.1119.

Google Scholar

[6] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, L. D. Chen: Appl. Phys. Lett. Vol. 84 (2004), p.541.

Google Scholar

[7] A. Tsukazaki, A. Ohtomo, M. Kawasaki: Appl. Phys. Lett. Vol. 88 (2006), p.152106.

Google Scholar

[8] U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dögan, V. Avrutin, S. -J. Cho, H. Morkoc:J. Appl. Phys. Vol. 98 (2005), p.041301.

DOI: 10.1063/1.1992666

Google Scholar

[9] O. Kappertz, R. Drese, M. Wutting:J. Vac. Sci. Technol. A Vol. 20 (2002), p. (2084).

Google Scholar

[10] Y. Hu, Y. Q. Chen, Y. C. Wu, M. J. Wang, G. J. Fang, C. Q. He, S. J. Wang: Appl. Surf. Sci. Vol. 255 (2009) , p.9279.

Google Scholar

[11] N. A. Svorova, I. O. Usov, L. Stan, R. F. DePaula, A. M. Dattelbaum, Q. X. Jia, A. A. Suvorova: Appl. Phys. Lett. Vol. 92 (2008), p.141911.

DOI: 10.1063/1.2896642

Google Scholar

[12] P. -T. Hsieh, Y. -C. Chen, K. -S. Kao, C. -M. Wang: Phys. B Vol. 403 (2008), p.178.

Google Scholar

[13] J. J. Chen, Y. Gao, F. Zeng, D. M. Li, F. Pan: Appl. Surf. S. Vol. 223 (2004), p.318.

Google Scholar

[14] W. Gao, Z. Li: Ceram. Intern. Vol. 30 (2004), p.1155.

Google Scholar

[15] H. K. Yadav, K. Sreenivas, V. Gupta: J. Appl. Phys. Vol. 99 (2006), p.083507.

Google Scholar

[16] R. Cebulla, R. Wendt, K. Ellmer: J. Appl. Phys. Vol. 83 (1998), p.1087.

Google Scholar

[17] V. Gupta, A. Mansingh: J. Appl. Phys. Vol. 80 (1996), p.1063.

Google Scholar

[18] M. L. Cui, X. M. Wu, L. J. Zhuge, Y. D. Meng: Vacuum Vol. 81 (2007), p.899.

Google Scholar

[19] R. Cebulla, R. Wendt, K. Ellmer: J. Appl. Phys. Vol. 83 (1998), p.1087.

Google Scholar

[20] M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali: Phys. B Vol. 403 (2008), p.3326.

DOI: 10.1016/j.physb.2008.04.045

Google Scholar

[21] H. Watanabe, N. Yamada, M. Okaji: Intern. J. Therm. Vol. 25 (2004), p.221.

Google Scholar