[1]
R. S. Varga: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ (1981).
Google Scholar
[2]
A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979, reprinted by SIAM, Philadelphia, PA (1994).
Google Scholar
[3]
W. F. Wang, D. W. Chang: The New Preconditioned USSOR Iterative Method and Comparison of Convergence . Journal of Inner Mongolia Normal University (Natural Science Edition), Vol 32. No. 2(2008), pp.158-161.
Google Scholar
[4]
Z. D. Wang, T. Z. Huang: Comparison results between Jacobi and other iterative methods. Journal of Computational and Applied Mathematics, Vol. 169(2004), pp.45-51.
DOI: 10.1016/j.cam.2003.10.017
Google Scholar
[5]
H. X. Chen: Convergent and divergent relationship between MPSD iterative method and Jacobi method. Comm. Appl. Math. Comput. Vol. 14. No. 1 (2000), pp.1-8.
Google Scholar
[6]
J. H. Yun: A note on the improving modified Gauss-Seidel (IMGS)method. Applied Mathematics and Computation Vol. 184(2007), pp.674-679.
DOI: 10.1016/j.amc.2006.06.067
Google Scholar
[7]
X. Z. Wang, T. Z. Huang, Y. D. Fu: Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems, J. Comput. Appl. Math., vol. 206(2007), pp.726-732.
DOI: 10.1016/j.cam.2006.08.034
Google Scholar