A Fast Algorithm for Computing the Determinants of the Heptadiagonal Matrices

Article Preview

Abstract:

The cost of all existing algorithm for evaluating th order determinants is at most . This paper presents a new efficient computational algorithm for solving the determinants of the heptadiagonal matrices with cost only. It is a generalization of the DETGTRI algorithm. The implementation of this algorithm using computer algebra system is straightforward. Numerical examples are given to demonstrate the result.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1798-1801

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] El-Mikkawy M E A: A fast algorithm for evaluating nth order tri-diagonal determinants. Journal of computational and applied mathematics, 581-584(2004).

DOI: 10.1016/j.cam.2003.08.044

Google Scholar

[2] El-Mikkawy M, Rahmo E D: A new recursive algorithm for inverting general periodic pentadiagonal and anti-pentadiagonal matrices. Applied Mathematics and Computation, 164-170(2009).

DOI: 10.1016/j.amc.2008.10.010

Google Scholar

[3] El-Mikkawy M, Karawia A: Inversion of general tridiagonal matrices. Applied Mathematics Letters, 712-720(2006).

DOI: 10.1016/j.aml.2005.11.012

Google Scholar

[4] El-Mikkawy M E A: A fast and reliable algorithm for evaluating nth order pentadiagonal determinants. Applied Mathematics and Computation, 210-215(2008).

DOI: 10.1016/j.amc.2008.01.032

Google Scholar

[5] Karawia A A: A computational algorithm for solving periodic penta-diagonal linear systems. Applied mathematics and computation, 613-618(2006).

DOI: 10.1016/j.amc.2005.04.098

Google Scholar

[6] Sogabe T: A fast numerical algorithm for the determinant of a pentadiagonal matrix. Applied Mathematics and Computation, 835-841(2008).

DOI: 10.1016/j.amc.2007.07.015

Google Scholar

[7] Lv X G, Huang T Z, Le J: A note on computing the inverse and the determinant of a pentadiagonal Toeplitz matrix. Applied Mathematics and Computation, 327-331(2008).

DOI: 10.1016/j.amc.2008.09.006

Google Scholar