Generalized J Sets Based on Periodic Orbit and Attract Time

Article Preview

Abstract:

The paper introduces escape-time algorithm applied to construct G-J set firstly, and two methods are presented for generating a great diversity of generalized J sets in which the point fall in low-cycle attract collections in the domain. One of the coloring methods is according to attract time, another is by recording the domain of the orbits. We used frieze group map to validate effectiveness for algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1806-1809

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kellert, Stephen H. (1993). In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press. p.32.

Google Scholar

[2] Poincaré, Jules Henri (1890). Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt,. Acta Mathematica 13: 1–270.

DOI: 10.1007/bf02417977

Google Scholar

[3] Goertzel.B. Rapid generation of strange attractors with the eugenic genetic algorithm. Computers & Graphics, Vol. 19(1) (1995), p.151~156.

DOI: 10.1016/0097-8493(94)00130-q

Google Scholar

[4] Ning Chen, Weiyong Zhu. Bud-sequnce conjecture on M fractal image and M-J conjecture between c and z planes from . Computers & Graphics, Vol. 22(4) (1998):537~546.

DOI: 10.1016/s0097-8493(98)00051-x

Google Scholar

[5] Sprott J C. Strange attractor symmetric icons. Computers and Graphics, Vol. 20(2) (1996), p.325~32.

DOI: 10.1016/0097-8493(95)00133-6

Google Scholar

[6] Field M and Golubitsky M. Symmetry in Chaos[M]. NewYork: Ox ford Universit y Press, (1992).

Google Scholar

[7] Grunbaum B, Shephard G C. Tilings and patterns. New York : Freeman, (1996).

Google Scholar

[8] Carter N, Eagles R, Grimes S, et al. Chaotic attractors with discrete planar symmetries [J] . Chaos Solitions and Fractals, Vol. 9(12) (1998), p.2031- (2054).

DOI: 10.1016/s0960-0779(97)00157-4

Google Scholar