[1]
T. Zhou: Convergence of Preconditioned Gauss-Seidel Iterative Method for H-matrix. Journal of Jiaying University (Natural Science), Vol 31. No. 2(2013), pp.5-8.
Google Scholar
[2]
A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York(1979), reprinted by SIAM, Philadelphia, PA(1994).
Google Scholar
[3]
T. Kolotilina: Two-sided bounds for the inverse of an H-matrix. Linear Algebra Appl. Vol. 225 (1995), pp.117-123.
DOI: 10.1016/0024-3795(93)00325-t
Google Scholar
[4]
J. G. Hu: Iterative Method for Linear Equations. Science Press (1991).
Google Scholar
[5]
R. S. Varga: Matrix Iterative Analysis. Springer, Berlin (2000).
Google Scholar
[6]
J. H. Yun: A note on the improving modified Gauss-Seidel (IMGS) method. Applied Mathematics and Computation Vol. 184 (2007), pp.674-679.
DOI: 10.1016/j.amc.2006.06.067
Google Scholar
[7]
L. Y. Sun: A comparison theorem of the improving Gauss-Seidel method for H-matrix and its comparison matrix. Applied Mathematics and Computation Vol. 183 (2006), pp.390-393.
DOI: 10.1016/j.amc.2006.05.077
Google Scholar
[8]
X. Z. Wang, T. Z. Huang, Y. D. Fu: Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems, J. Comput. Appl. Math., vol. 206(2007), pp.726-732.
DOI: 10.1016/j.cam.2006.08.034
Google Scholar
[9]
W. Li: Comparison results for solving preconditioned linear systems, J. Comput. Appl. Math., vol. 176(2005), pp.319-329.
Google Scholar