Convergence Results of the Improving Modified Gauss-Seidel (IMGS) Iterative Method for a Symmetric Positive Definite Matrix

Article Preview

Abstract:

In this paper, in order to improve the convergence rates of iterative method solving the linear system, the improving modified Gauss-Seidel (IMGS) iterative method with a preconditioner is proposed. Some convergence and comparison results are given when is a symmetric definite matrix are provided.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1794-1797

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Zhou: Convergence of Preconditioned Gauss-Seidel Iterative Method for H-matrix. Journal of Jiaying University (Natural Science), Vol 31. No. 2(2013), pp.5-8.

Google Scholar

[2] A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York(1979), reprinted by SIAM, Philadelphia, PA(1994).

Google Scholar

[3] T. Kolotilina: Two-sided bounds for the inverse of an H-matrix. Linear Algebra Appl. Vol. 225 (1995), pp.117-123.

DOI: 10.1016/0024-3795(93)00325-t

Google Scholar

[4] J. G. Hu: Iterative Method for Linear Equations. Science Press (1991).

Google Scholar

[5] R. S. Varga: Matrix Iterative Analysis. Springer, Berlin (2000).

Google Scholar

[6] J. H. Yun: A note on the improving modified Gauss-Seidel (IMGS) method. Applied Mathematics and Computation Vol. 184 (2007), pp.674-679.

DOI: 10.1016/j.amc.2006.06.067

Google Scholar

[7] L. Y. Sun: A comparison theorem of the improving Gauss-Seidel method for H-matrix and its comparison matrix. Applied Mathematics and Computation Vol. 183 (2006), pp.390-393.

DOI: 10.1016/j.amc.2006.05.077

Google Scholar

[8] X. Z. Wang, T. Z. Huang, Y. D. Fu: Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems, J. Comput. Appl. Math., vol. 206(2007), pp.726-732.

DOI: 10.1016/j.cam.2006.08.034

Google Scholar

[9] W. Li: Comparison results for solving preconditioned linear systems, J. Comput. Appl. Math., vol. 176(2005), pp.319-329.

Google Scholar