[1]
ASTM E1019-11 Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques.
DOI: 10.1520/e1019-02
Google Scholar
[2]
ISO 15350-2000 Steel and iron - Determination of total carbon and sulfur content - Infrared absorption method after combustion in an induction furnace (routine method).
DOI: 10.3403/02272084u
Google Scholar
[3]
Jiang Qicui.Metallurgical Analysis[J], 2005, 25(4):95-96.
Google Scholar
[4]
Kunio Takada, Tetsuya Ashino, Yukitoshi Morimoto, Hisao Yasuhara, Mayuko Kurosaki and Kenji Abiko, Determination of Trace Amounts of Sulfur in High-Purity Iron by Infrared Absorption after Combustion: Removal of Sulfur Blank, Materials Transactions, JIM, Vol, 41, No. 1(2000).
DOI: 10.2320/matertrans1989.41.53
Google Scholar
[5]
Zhou Jun.Special Steel Technology[J], 2006, 14(3): 46—47.
Google Scholar
[6]
Hong Zhian. Research on Iron and Steel[J], 1997, 25(6): 36-38.
Google Scholar
[7]
Sun Ying, Song Weidi.Metallurgical Analysis[J], 2000, 20(2):54-59.
Google Scholar
[8]
Ashino T.; Takada K.; Morimoto Y.; Abiko K. Determination of trace amounts of sulfur in high-purity iron by infrared absorption after combustion: Selection and pre-treatment of reaction accelerators, Physica Status Solidi. A, Applied Research. 2002, 189, 1, pp.123-132.
DOI: 10.1002/1521-396x(200201)189:1<123::aid-pssa123>3.0.co;2-9
Google Scholar
[9]
Li Gang, Li Xusheng, Kong Yuan, et al., Shandong Metallurgy[J], 2006, 28(2):63—65.
Google Scholar
[10]
Jianhuan Wei, Huafeng Sun, Shengjie Yang, the cycle measurement of sulfur blank value with the CS-444 infrared ray carbon sulfur analyzer, Advanced Materials Research, Vals. 399-401(2012)pp.2173-2176.
DOI: 10.4028/www.scientific.net/amr.399-401.2173
Google Scholar
[11]
Cai Jijie, Huang Zongping, Yang Lihui.Chinese Journal of Spectroscopy Laboratory[J], 2003, 20(2):221—223.
Google Scholar
[12]
Li Gang, Wu Weiyan.Physical and Chemical Inspection-Chemical[J], 2008, 44(2):125-130.
Google Scholar
[13]
YAMADA K, MCLEOD C W, KUJIRAI O, et al. J Anal Atom Spectrom[J], 1992, 7(4):661-665.
Google Scholar
[14]
Li Jie, Zhang Suizhong.Wisco Technology[J], 2005, 43(3):9-11.
Google Scholar
[15]
Xu Jianping.Metallurgical Analysis[J], 2004, 24(4):31-33.
Google Scholar
[16]
Zhang Fang.Spectroscopy Laboratory[J], 1998, 15(2):31-35.
Google Scholar
[17]
Hu Jingyu, Shao Guangdi, Hu Xiaoyan et al., Analytical Chemistry[J], 1999, 27(11):1313-1316.
Google Scholar
[18]
Lan Yuwei, Lu Jianping, Zhang Zhangfa et al., Metallurgical Analysis[J], 2008, 28(1):24-26.
Google Scholar
[19]
HOUK R S, FASSEL V A, FLESH G D, et a1.Anal Chem[J], 1980, 52(14):2283-2289.
Google Scholar
[20]
HOUK R S Anal Chem[J], 1986, 58(1):97A-105A.
Google Scholar
[21]
WATANABE K. Talanta[J], 1979, 26(3):251—253.
Google Scholar
[22]
Grégoire D C. J Anal Atom Spectrom[J], 1995, 10(10):823—828.
Google Scholar
[23]
NAKA H, Grégoire D C. J Anal Atom Spectrom[J], 1996, 11(5):359—363.
Google Scholar
[24]
KELLY W R, CHEN L T, GRAMLICH J W, et al. Analyst[J], 1990, 115(8):1019—1024.
Google Scholar
[25]
Yang Jiahe.Journal of Sanming University[J], 1998, 15(1):48-49.
Google Scholar
[26]
Li Yuangui, Liu Yuying, Zhang Ping.Shangdong Mechanical[J], 2000, 36(3):37-38.
Google Scholar
[27]
KURUSU K, YAMAMOTO T.Anal Chim Acta[J], 1991, 244(1):59-62.
Google Scholar
[28]
Jiang Xiumei, Yao Likun.North China Electric Power[J], 2007, 37(Suppl. (1):136—137.
Google Scholar