A Study on Pathway and QSPR Models for Debromination of PBDEs with Pseudopotential Method

Article Preview

Abstract:

Neutral PBDEs congeners and their corresponding radical anions were studied with the pseudopotential method of stuttgart group (SDD) effective-core potentials basis set for the bromine atoms and the all-electron basis set for all other atoms. The pseudopotential method can be used for compounds containing heavy elements with relativistic effects and can reduce the computational time. The quantitative structure property relationship (QSPR) study was also performed in this work to develop models to predict the normolized reaction rate constants for the reductive debromination of polybrominated diphenyl ethers (PBDEs) by zero-valent iron (ZVI). The partial least squares regression (PLSR), principal component analysis-multiple linear regression analysis (PCA-MLR), and back propagation artificial neural network (BP-ANN) approaches were employed for the QSPR study between the molecular descriptors and the logarithm of normalized reaction rate constants of fourteen selected BDE congeners. The results show that the ANN models could be more satisfactorily to predict the rate constants than the PLSR and PCA-MLR models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Pan and W. Bian: ChemPhysChem. Vol. 14 (2013), p.1264.

Google Scholar

[2] D. Wang, Z. Cai, G. Jiang, A. Leung, M.H. Wong and W.K. Wong: Chemosphere Vol. 60 (2005), p.810.

Google Scholar

[3] D.L. Wang, Z.W. Cai, G.B. Jiang, M.H. Wong, W.K. Wong: Rapid Commum. Mass Spectrom. 19 (2005), p.83.

Google Scholar

[4] A. Leung, Z.W. Cai and M.H. Wong: J. Matcr. Cyclcs. Wastc. Manag. Vol. 8 (2006), p.21.

Google Scholar

[5] Q. Luo, Z.W. Cai and M.H. Wong: Sci. Total. Environ. Vol. 383 (2007), p.115.

Google Scholar

[6] L.Y. Zhu and R.A. Hites: Anal. Chem. Vol. 75 (2003), p.6696.

Google Scholar

[7] A. Li, C. Tai, Z. Zhao, Y. Wang, Q. Zhang, G. Jiang and J. Hu: Environ. Sci. Technol. Vol. 41 (2007), p.6841.

Google Scholar

[8] A.L.J. Nuerla, X.L. Qiao, J. Li, D.M. Zhao, X.H. Yang, Q. Xie and J.W. Chen: Chin. Sci. Bull. Vol. 58 (2013), p.884.

Google Scholar

[9] J. Fu, Y. Wang, A. Zhang, Q. Zhang, Z. Zhao, T. Wang and G. Jiang: Chemosphere Vol. 82 (2011), p.648.

Google Scholar

[10] H. Zhu, Y. Wang, X. Wang, T. Luan and N.F.Y. Tam: Sci. Total. Environ. Vol. 468-469 (2014), p.130.

Google Scholar

[11] J. Luo, J. Hu, Y. Zhuang, X. Wei, X. Huang, Electron-induced reductive debromination of 2, 3, 4-tribromodiphenyl ether: a computational study, J. Mol. Model. Vol. 19 (2013), p.3333.

DOI: 10.1007/s00894-013-1868-y

Google Scholar

[12] G.L. Yuan, P. Han, W. Xie, X.C. Che and G.H. Wang: Sci. Total. Environ. Vol. 433 (2012), p.44.

Google Scholar

[13] Y.S. Keum and Q.X. Li: Environ. Sci. Technol. Vol. 39 (2005), p.2280.

Google Scholar

[14] Y. Zhuang, S. Ahn and R.G. Luthy: Environ. Sci. Technol. Vol. 44 (2010), p.8236.

Google Scholar

[15] J. Hu, L. Eriksson, A. Bergman, E. Kolehmainen, J. Knuutinen, R. Suontamo and X. Wei: Chemosphere Vol. 59 (2005), p.1033.

DOI: 10.1016/j.chemosphere.2004.11.028

Google Scholar

[16] Y. Zhuang, L. Jin and R.G. Luthy: Chemosphere Vol. 89 (2012), p.426.

Google Scholar

[17] Y. Zhuang, S. Ahn, A.L. Seyfferth, Y. Masue-Slowey, S. Fendorf and R. G. Luthy: Environ. Sci. Technol. Vol. 45 (2011), p.4896.

DOI: 10.1021/es104312h

Google Scholar

[18] J.W. Hu, Y. Zhuang, J. Luo and X.H. Wei: Advan. Mater. Res. Vol. 550-553 (2012), p.2668.

Google Scholar

[19] M. Straka, Computational studies of new heavy-element species, University of Helsinki, Helsinki, Finland, (2001).

Google Scholar

[20] Á. Valdés, R. Prosmiti, P. Villarreal and G. Delgado-Barrio: Mol. Phy. (2014). (in press, DOI: 10. 1080/00268970412331290634).

Google Scholar

[21] J. Luo, J. Hu, Y. Zhuang, X. Wei and X. Huang: Chemosphere Vo l. 91 (2013), p.765.

Google Scholar

[22] J. Hu, X. Zhang and Z. Wang: Int. J. Mol. Sci. Vol. 11 (2010), p.1020.

Google Scholar

[23] C. Lee, W. Yang and R.G. Parr: Phys. Rev. B Vol. 37 (1988), p.785.

Google Scholar

[24] A.D. Becke: J. Chem. Phys. Vol. 98 (1993), p.5648.

Google Scholar

[25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, Jr. J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03. Gaussian, Inc., Wallingford CT, (2004).

Google Scholar