[1]
Sun D Z. Advanced Oxidation Technology in Environmental Engineering[M]. Beijing Chemical Industry Press. 2002. 358-366.
Google Scholar
[2]
Poyatos J M, Almecijia M C, Torres J C, et al. Advanced oxidation processes for wastewater treatment: ttate of the art[J]. Water Air Soil Pollut, 2010, 205(1-4): 187-204.
DOI: 10.1007/s11270-009-0065-1
Google Scholar
[3]
M. Antonopoulou, E. Evaenidou, et al. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media[J]. Water Research, 2014, 53(15): 215-234.
DOI: 10.1016/j.watres.2014.01.028
Google Scholar
[4]
Jacek Nawrocki, Barbara Kasprzyk-Hordern. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental99 (2010) 27–42.
DOI: 10.1016/j.apcatb.2010.06.033
Google Scholar
[5]
Amir Ikhlaq, David R. Brown, Barbara Kasprzyk-Hordern. Mechanisms of catalytic ozonation on alumina and zeolites in water: Formation of hydroxyl radicals[J]. Applied Catalysis B: Environmental 123–124 (2012) 94–106.
DOI: 10.1016/j.apcatb.2012.04.015
Google Scholar
[6]
Shi-Ni Zhu, K.N. Hui, et al. Catalytic ozonation of basic yellow 87 with a reusable catalyst chip[J]. Chemical Engineering Journal, 242(15): 180-186.
DOI: 10.1016/j.cej.2013.12.041
Google Scholar
[7]
Qiangqiang Sun, Laisheng Li, Huihua Yan, Xiaoting Hong, et al. Influence of the surface hydroxyl groups of MnOx/SBA-15 on heterogeneous catalytic ozonation of oxalic acid[J]. Chemical Engineering Journal, 242(15): 348-356.
DOI: 10.1016/j.cej.2013.12.097
Google Scholar
[8]
Huanan Li, Bingbing Xu et al. Degradation of bezafibrate in wastewater by catalytic ozonation with cobalt doped red mud: Efficiency, intermediates and toxicity[J]. Applied Catalysis B: Environmental, 152-153(25): 342-351.
DOI: 10.1016/j.apcatb.2014.01.058
Google Scholar
[9]
Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99: 27-42.
DOI: 10.1016/j.apcatb.2010.06.033
Google Scholar
[10]
Kasprzyk-Hordern B, Zi ek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46(40): 639-669.
DOI: 10.1016/s0926-3373(03)00326-6
Google Scholar
[11]
Zhao L, Sun Z Z, Ma J, et al, Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution [J]. Environmental Science & Technology, 2009, 43(6): 2047-(2053).
DOI: 10.1021/es803125h
Google Scholar
[12]
Chengsi Pan, Dengsong Zhang, Liyi Shi. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods[J]. Journal of Solid State Chemistry 181 (2008) 1298–1306.
DOI: 10.1016/j.jssc.2008.02.011
Google Scholar
[13]
Lai Yan, Ranbo Yu, Jun Chen, and Xianran Xing. Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution[J]. Crystal Growth & Design, Vol. 8, No. 5, 2008: 1474-1477.
DOI: 10.1021/cg800117v
Google Scholar
[14]
Chengchun Tang, Yoshio Bando, et al. Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes[J]. Adv. Mater. 2005, 17, 3005–3009.
DOI: 10.1002/adma.200501557
Google Scholar