[1]
N. Tutuncu, M. Ozturk, Exact solutions for stresses in functionally graded pressure vessels, Composites: Part B, Vol. 32 (2001) pp.683-686.
DOI: 10.1016/s1359-8368(01)00041-5
Google Scholar
[2]
Z. S. Shao, L. F. Fan, T. J. Wang, Analytical Solutions of Stresses in Functionally Graded Circular Hollow Cylinder with Finite Length, Key Engineering Materials, Vol. 261-263 (2004) pp.651-656.
DOI: 10.4028/www.scientific.net/kem.261-263.651
Google Scholar
[3]
N. Tutuncu, Stresses in thick walled FGM cylinders with exponentially varying properties, Engineering Structures, Vol. 29 (2007), pp.2032-2035.
DOI: 10.1016/j.engstruct.2006.12.003
Google Scholar
[4]
Y. Z. Chen, X. Y. Lin, Elastic analysis for thick cylinders and spherical vessels made of functionally graded materials, Computational Material Science, Vol. 44 (2008) pp.581-587.
DOI: 10.1016/j.commatsci.2008.04.018
Google Scholar
[5]
M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials, Composites: Part B, Vol. 45 (2013) pp.388-396.
DOI: 10.1016/j.compositesb.2012.09.043
Google Scholar
[6]
M. J. Khoshgoftar, G. H. Rahimi, M. Arefi, Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure, Mechanics Research Communications, Vol. 51, (2013), pp.61-66.
DOI: 10.1016/j.mechrescom.2013.05.001
Google Scholar
[7]
J. E. Jam, Y. R. Nezhad, Semi-Analytical solution of functionally graded circular short hollow cylinder subject to transient thermal loading, Archive of Mechanical Engineering, Vol. 61 No. 3 (2014) pp.409-432.
DOI: 10.2478/meceng-2014-0023
Google Scholar
[8]
M. S. El. Wazery, A. R. El Desouky, A review on functionally graded ceramic metal materials, Material Environment Science, Vol. 6, No. 5 (2015) pp.1369-1376.
Google Scholar
[9]
L. Xin, S. Yang, D. Zhou, G. Dui, An approximate analytical solution based on the Mori-Tanaka method for functionally graded thick-walled tube subjected to internal pressure, Composite Structures (2015), Vol. 135 (2016), pp.74-82.
DOI: 10.1016/j.compstruct.2015.08.104
Google Scholar
[10]
Y. K. Bhardwaj, V. Bansal, B. P. Mahur, Analysis of functionally graded cylinder subjected to internal pressure, 4th international conference on science, technology and management, India International Center, New Delhi (2016) pp.912-916.
Google Scholar
[11]
Y. K. Bhardwaj, V. Bansal, B. P. Mahur, Analysis of functionally graded cylinder subjected to varying thermal load in axial direction, International Journal of Advanced Technology in Engineering and Science, Vol. 4, No. 7 (2016) pp.189-195.
Google Scholar
[12]
Ch. Sachdeva, S. S. Padhee, Functionally Graded Cylinders: Asymptotically Exact Analytical Formulations, Applied Mathematical Modeling, Vol. 54, (2018) pp.782-802.
DOI: 10.1016/j.apm.2017.10.019
Google Scholar
[13]
D. T. Sarathchandra, S. K. Subbu, N. Venkaiah, Modeling and analysis of functionally graded cylindrical shell, Materials today Proceedings, Vol. 5 (2018) pp.8587-8595.
DOI: 10.1016/j.matpr.2017.11.556
Google Scholar
[14]
R. Moheimani, M. Damadam, A. Nayebi, H. Dalir, Thick-Walled Functionally Graded Material Cylinder under Thermo-Mechanical Loading, 9th International Conference on Mechanical and Aerospace Engineering (2018) pp.505-510.
DOI: 10.1109/icmae.2018.8467646
Google Scholar
[15]
S. M. Nabavi, S. S. H. Rekavandi, Analysis of stress intensity factors for functionally graded cylinders with multiple longitudinal cracks using finite element method, Applied and Computational Mechanics, Vol. 13 (2019) pp.125-136.
DOI: 10.24132/acm.2019.539
Google Scholar
[16]
S. K. Paul, M. Sahni, Two-dimensional mechanical stresses for a pressurized cylinder made of functionally graded material, Structural Integrity and Life, Vol. 19 No. 2 (2019) pp.79-85.
Google Scholar
[17]
M. Eker, D. Yarimpabuc, A. Yildirim, K. Celebi, Elastic solutions based on the mori-tanaka scheme for pressurized functionally graded cylinder, Journal of applied Mathematics and Computational Mechanics, Vol. 19 No. 4 (2020) pp.57-68.
DOI: 10.17512/jamcm.2020.4.05
Google Scholar
[18]
R. Yadav, A. Islam, K. Sharma, Modeling and fe analysis of functionally graded (fg) composite shell structures, European Journal of Molecular & Clinical Medicine, Vol. 7, No. 4 (2020) pp.725-736.
Google Scholar