[1]
S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,, Materials Science and Engineering C: Materials for Biological Applications, vol. 68, p.948–963, (2016).
DOI: 10.1016/j.msec.2016.06.020
Google Scholar
[2]
H. S. Brar, J. Wong, and M. V. Manuel, Investigation of the mechanical and degradation properties of Mg-Sr and Mg-ZnSr alloys for use as potential biodegradable implant materials,, Journal of the Mechanical Behavior of Biomedical Materials, vol.7, p.87–95, (2012).
DOI: 10.1016/j.jmbbm.2011.07.018
Google Scholar
[3]
Y. Yang et al, Mg bone implant: Features, developments and prospective,,Materials & Design 185 (2020) 108259.
Google Scholar
[4]
H. Waizy, J.-M. Seitz, J. Reifenrath et al., Biodegradable magnesium implants for orthopedic applications,, Journal of Materials Science, vol. 48, no. 1, p.39–50, (2013).
DOI: 10.1007/s10853-012-6572-2
Google Scholar
[5]
Y.F. Zheng, X.N.Gu, F.Witte, Biodegradable metals,, Journal of Materials Science and Engineering: R: Reports, Volume 77, March 2014, Pages 1-34.
Google Scholar
[6]
Kumar, K., Das, A., & Prasad, S. B. (2021). Recent developments in biodegradable magnesium matrix composites for orthopaedic applications: A review based on biodegradability, mechanical and biocompatibility perspective. Materials Today: Proceedings, 44, 2038–(2042).
DOI: 10.1016/j.matpr.2020.12.133
Google Scholar
[7]
F. Witte, N. Hort, F. Feyerabend, C. Vogt: Magnesium (Mg) corrosion: a challenging concept for degradable implants Corrosion of Magnesium Alloys Woodhead Publishing Series in Metals and Surface Engineering 2011, Pages 403-425.
DOI: 10.1533/9780857091413.3.403
Google Scholar
[8]
Hofstetter, J.; Martinelli, E.; Weinburg, A.M.; Becker, M.; Mingler, B.; Uggowitzer, J.; Loffler, J.F. Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corros. Sci. 2015, 91, 29–36.
DOI: 10.1016/j.corsci.2014.09.008
Google Scholar
[9]
Song, G.L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11–33.
Google Scholar
[10]
Song, G.; Atrens, A. Understanding magnesium corrosion-A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858.
DOI: 10.1002/adem.200310405
Google Scholar
[11]
Ali, Y.; Qiu, D.; Jiang, B.; Pan, F.; Zhang, M.X. Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloys Compd. 2015, 619, 639–651.
DOI: 10.1016/j.jallcom.2014.09.061
Google Scholar
[12]
Ali, M., Hussein, M.A., Al-Aqeeli, N., 2019. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. Journal of Alloys and Compounds 792, 1162–1190.
DOI: 10.1016/j.jallcom.2019.04.080
Google Scholar
[13]
Ikuho Nakahata, Yusuke Tsutsumi and Equo Kobayashi: Mechanical Properties and Corrosion Resistance of Magnesium–Hydroxyapatite Composites Fabricated by Spark Plasma Sintering; Metals 2020, 10, 1314.
DOI: 10.3390/met10101314
Google Scholar
[14]
Ratna Sunil, B., Sampath Kumar, T.S., Chakkingal, U., Nandakumar, V., Doble, M., 2014c. Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior. Materials Science and Engineering C 39, 315–324.
DOI: 10.1016/j.msec.2014.03.004
Google Scholar
[15]
Gururaj Parande, Vyasaraj Manakari, Harshit Gupta and Manoj Gupta: Magnesium-β-Tricalcium Phosphate Composites as a Potential Orthopedic Implant: A Mechanical/ Damping/Immersion Perspective; Metals 2018, 8, 343.
DOI: 10.3390/met8050343
Google Scholar
[16]
Khalajabadi, Shahrouz Zamani; Abdul Kadir, Mohammed Rafiq; Izman, Sudin; Marvi, Mohsen (2015). The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method. Journal of Alloys and Compounds, 655 (2016) 266-280.
DOI: 10.1016/j.jallcom.2015.09.107
Google Scholar
[17]
Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater. Sci. Eng. A 2006, 419, 344–348.
DOI: 10.1016/j.msea.2006.01.016
Google Scholar
[18]
R Radha, D Sreekanth, N Bharti, A Rana: Mg-1Sn/Al2O3 biodegradable composites: Effect of Al2O3 addition on mechanical, invitro corrosion and bioactivity response; 2019 Materials Research Express 6 (10), 105411.
DOI: 10.1088/2053-1591/ab3b41
Google Scholar
[19]
Frank Witte, Frank Feyerabend, Petra Maier, Jens Fischer, Michael Störmer, Carsten Blawert, Wolfgang Dietzel, Norbert Hort: Biodegradable magnesium-hydroxyapatite metal matrix composites; Biomaterials 28 (2007) 2163–2174.
DOI: 10.1016/j.biomaterials.2006.12.027
Google Scholar
[20]
M. Razavi, M.H. Fathi, M. Meratian: Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications; Mater. Sci. Eng. A 527 (2010) 6938-6944.
DOI: 10.1016/j.msea.2010.07.063
Google Scholar
[21]
Bruno Zberg, Peter J. Uggowitzer and Jörg F. Löffler: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants; Nat. Mater. 8 (2009) 887-891.
DOI: 10.1038/nmat2542
Google Scholar
[22]
X. N. Gu; X. Wang; N. Li; L. Li; Y. F. Zheng; Xigeng Miao (2011). Microstructure and characteristics of the metal–ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. , 99B(1), 127–134.
DOI: 10.1002/jbm.b.31879
Google Scholar
[23]
Ali Ercetin and Danil Yurievich Pimenov: Microstructure, Mechanical, and Corrosion Behavior of Al2O3 Reinforced Mg2Zn Matrix Magnesium Composites; Materials 2021, 14, 4819.
DOI: 10.3390/ma14174819
Google Scholar
[24]
Jinlong SU, Jie TENG1, Zili XU2, Yuan LI: Corrosion–wear behavior of a biocompatible magnesium matrix composite in simulated body fluid; Friction 10(1): 31–43 (2022).
DOI: 10.1007/s40544-020-0361-8
Google Scholar
[25]
G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta, Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications, Materials and Design 65 (2015) 104–114.
DOI: 10.1016/j.matdes.2014.08.041
Google Scholar
[26]
Khandelwal, Apratim; Mani, Karthick; Srivastava, Neeraj; Gupta, Rahul; Chaudhari, G.P. (2017). Mechanical behavior of AZ31/Al 2 O 3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Composites Part B: Engineering,123(15) 64-73.
DOI: 10.1016/j.compositesb.2017.05.007
Google Scholar
[27]
M. Esmaily, N. Mortazavi, J.E. Svensson, M. Halvarsson, M. Wessén, L.G. Johansson, A.E.W. Jarfors, A new semi-solid casting technique for fabricating SiC-reinforced Mg alloys matrix composites, Composites Part B: Engineering 94 (2016) 176- 189.
DOI: 10.1016/j.compositesb.2016.02.019
Google Scholar
[28]
Akinwekomi, Akeem Damilola; Law, Wing-Cheung; Tang, Chak-Yin; Chen, Ling; Tsui, Chi-Pong (2016). Rapid Microwave Sintering of Carbon Nanotube-Filled AZ61 Magnesium Alloy Composites. Composites Part B: Engineering, 93 (2016 302-309.
DOI: 10.1016/j.compositesb.2016.03.041
Google Scholar
[29]
C. I. Chang, Y. N. Wang, H. R. Pei, C. J. Lee, X. H. Du, J. C. Huang: Microstructure and Mechanical Properties of Nano-ZrO2 and Nano-SiO2 Particulate Reinforced AZ31-Mg Based Composites Fabricated by Friction Stir Processing; Key Engineering Materials Vol. 351 (2007) pp.114-119.
DOI: 10.4028/www.scientific.net/kem.351.114
Google Scholar
[30]
Sravya Tekumalla, Najib Farhan, Tirumalai S. Srivatsan and Manoj Gupta: Nano-ZnO Particles' Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy; Metals 2016, 6, 276.
DOI: 10.3390/met6110276
Google Scholar
[31]
Q.C. Jiang; X.L. Li; H.Y. Wang: Fabrication of TiC particulate reinforced magnesium matrix composite; Scripta Materialia 48 (2003) 713–717.
DOI: 10.1016/s1359-6462(02)00551-1
Google Scholar
[32]
Qiao K, Zhang T, Wang K, Yuan S, Zhang S, Wang L, Wang Z, Peng P, Cai J, Liu C and Wang W (2021): Mg/ZrO2 Metal Matrix Nanocomposites Fabricated by Friction Stir Processing: Microstructure, Mechanical Properties, and Corrosion Behavior; Front. Bioeng. Biotechnol. 9:605171.
DOI: 10.3389/fbioe.2021.605171
Google Scholar
[33]
Lei, T., Tang, W., Cai, S.-H., Feng, F.-F., and Li, N.-F., 2012, On the Corrosion Behaviour of Newly Developed Biodegradable Mg-Based Metal Matrix Composites Produced by in Situ Reaction,, Corros. Sci., 54, p.270–277.
DOI: 10.1016/j.corsci.2011.09.027
Google Scholar
[34]
Stüpp CA, Szakács G, Mendis CL, Gensch F, Müller S, Feyerabend F, et al. Powder metallurgical synthesis of biodegradable Mg-hydroxyapatite composites for biomedical applications; Materials Science Forum Vols. 828-829 (2015) 165-171.
DOI: 10.4028/www.scientific.net/msf.828-829.165
Google Scholar
[35]
Salleh, E.M., Zuhailawati, H., Ramakrishnan, S., and Dhindaw, B. K., 2017, Enhanced Mechanical Properties and Corrosion Behavior of Biodegradable MgZn/HA Composite,, Metall. Mater. Trans. A, 48(5), 2519–2528.
DOI: 10.1007/s11661-017-4028-7
Google Scholar
[36]
Cao NQ, Pham DN, Kai N, Dinh HV, Hiromoto S, Kobayashi E. In vitro corrosion properties of Mg matrix in situ composites fabricated by spark plasma sintering. Metals 2017;7:358.
DOI: 10.3390/met7090358
Google Scholar
[37]
J. H. Gao S.S. Hou E. C. Meng S. K. Guan, X. Y. Shi F. X. Guan, B. Yang: Fabrication and characterization of bioactive composite coatings on Mg–Zn–Ca alloy by MAO/sol–gel; J Mater Sci: Mater Med (2011) 22:1681–1687.
DOI: 10.1007/s10856-011-4349-9
Google Scholar
[38]
Radha R, D. Sreekanth, Nihal Bharti, Akshay Rana: Mg-1Sn/Al2O3 biodegradable composites: Effect of Al2O3 addition on mechanical, invitro corrosion and bioactivity response; Materials Research Express 2019, 6 (10), 105411.
DOI: 10.1088/2053-1591/ab3b41
Google Scholar
[39]
Dezfuli SN, Leeflang S, Huan Z, Chang J, Zhou J. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications. Mater Sci Eng C 2017; 79:647e60.
DOI: 10.1016/j.msec.2017.05.021
Google Scholar
[40]
Liping Xu; Feng Pan; Guoning Yu; Lei Yang; Erlin Zhang; Ke Yang (2009). In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy; Biomaterials 30 (2009) 1512–1523.
DOI: 10.1016/j.biomaterials.2008.12.001
Google Scholar