Developing Mg Based Composites for Degradable Orthopedic Implant Applications: A Review

Article Preview

Abstract:

Research on developing degradable implants from metals is one of the potential research fields in the biomedical engineering. Magnesium (Mg), iron (Fe) and zinc (Zn) are the three metallic systems widely investigated as potential materials to manufacture degradable orthopedic and stent applications. Among them, magnesium-based implants have shown promising properties suitable for orthopedic and stent applications. In spite of several benefits such as biocompatibility, non-toxicity and degradability, magnesium is associated with a few limitations including rapid corrosion and evolution of hydrogen during the degradation in the biological environment. Several materials engineering strategies have been employed to address the limitation of magnesium. Developing composites by incorporating suitable reinforcements into Mg is such promising route to develop Mg based implants with tailored properties. The present review provides a snap shot of the developments reported in development of Mg based composite for degradable implant applications. Different phases used to incorporate into Mg and the influenced properties with the future scope and the challenges are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-67

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,, Materials Science and Engineering C: Materials for Biological Applications, vol. 68, p.948–963, (2016).

DOI: 10.1016/j.msec.2016.06.020

Google Scholar

[2] H. S. Brar, J. Wong, and M. V. Manuel, Investigation of the mechanical and degradation properties of Mg-Sr and Mg-ZnSr alloys for use as potential biodegradable implant materials,, Journal of the Mechanical Behavior of Biomedical Materials, vol.7, p.87–95, (2012).

DOI: 10.1016/j.jmbbm.2011.07.018

Google Scholar

[3] Y. Yang et al, Mg bone implant: Features, developments and prospective,,Materials & Design 185 (2020) 108259.

Google Scholar

[4] H. Waizy, J.-M. Seitz, J. Reifenrath et al., Biodegradable magnesium implants for orthopedic applications,, Journal of Materials Science, vol. 48, no. 1, p.39–50, (2013).

DOI: 10.1007/s10853-012-6572-2

Google Scholar

[5] Y.F. Zheng, X.N.Gu, F.Witte, Biodegradable metals,, Journal of Materials Science and Engineering: R: Reports, Volume 77, March 2014, Pages 1-34.

Google Scholar

[6] Kumar, K., Das, A., & Prasad, S. B. (2021). Recent developments in biodegradable magnesium matrix composites for orthopaedic applications: A review based on biodegradability, mechanical and biocompatibility perspective. Materials Today: Proceedings, 44, 2038–(2042).

DOI: 10.1016/j.matpr.2020.12.133

Google Scholar

[7] F. Witte, N. Hort, F. Feyerabend, C. Vogt: Magnesium (Mg) corrosion: a challenging concept for degradable implants Corrosion of Magnesium Alloys Woodhead Publishing Series in Metals and Surface Engineering 2011, Pages 403-425.

DOI: 10.1533/9780857091413.3.403

Google Scholar

[8] Hofstetter, J.; Martinelli, E.; Weinburg, A.M.; Becker, M.; Mingler, B.; Uggowitzer, J.; Loffler, J.F. Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corros. Sci. 2015, 91, 29–36.

DOI: 10.1016/j.corsci.2014.09.008

Google Scholar

[9] Song, G.L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11–33.

Google Scholar

[10] Song, G.; Atrens, A. Understanding magnesium corrosion-A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858.

DOI: 10.1002/adem.200310405

Google Scholar

[11] Ali, Y.; Qiu, D.; Jiang, B.; Pan, F.; Zhang, M.X. Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloys Compd. 2015, 619, 639–651.

DOI: 10.1016/j.jallcom.2014.09.061

Google Scholar

[12] Ali, M., Hussein, M.A., Al-Aqeeli, N., 2019. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. Journal of Alloys and Compounds 792, 1162–1190.

DOI: 10.1016/j.jallcom.2019.04.080

Google Scholar

[13] Ikuho Nakahata, Yusuke Tsutsumi and Equo Kobayashi: Mechanical Properties and Corrosion Resistance of Magnesium–Hydroxyapatite Composites Fabricated by Spark Plasma Sintering; Metals 2020, 10, 1314.

DOI: 10.3390/met10101314

Google Scholar

[14] Ratna Sunil, B., Sampath Kumar, T.S., Chakkingal, U., Nandakumar, V., Doble, M., 2014c. Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior. Materials Science and Engineering C 39, 315–324.

DOI: 10.1016/j.msec.2014.03.004

Google Scholar

[15] Gururaj Parande, Vyasaraj Manakari, Harshit Gupta and Manoj Gupta: Magnesium-β-Tricalcium Phosphate Composites as a Potential Orthopedic Implant: A Mechanical/ Damping/Immersion Perspective; Metals 2018, 8, 343.

DOI: 10.3390/met8050343

Google Scholar

[16] Khalajabadi, Shahrouz Zamani; Abdul Kadir, Mohammed Rafiq; Izman, Sudin; Marvi, Mohsen (2015). The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method. Journal of Alloys and Compounds, 655 (2016) 266-280.

DOI: 10.1016/j.jallcom.2015.09.107

Google Scholar

[17] Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater. Sci. Eng. A 2006, 419, 344–348.

DOI: 10.1016/j.msea.2006.01.016

Google Scholar

[18] R Radha, D Sreekanth, N Bharti, A Rana: Mg-1Sn/Al2O3 biodegradable composites: Effect of Al2O3 addition on mechanical, invitro corrosion and bioactivity response; 2019 Materials Research Express 6 (10), 105411.

DOI: 10.1088/2053-1591/ab3b41

Google Scholar

[19] Frank Witte, Frank Feyerabend, Petra Maier, Jens Fischer, Michael Störmer, Carsten Blawert, Wolfgang Dietzel, Norbert Hort: Biodegradable magnesium-hydroxyapatite metal matrix composites; Biomaterials 28 (2007) 2163–2174.

DOI: 10.1016/j.biomaterials.2006.12.027

Google Scholar

[20] M. Razavi, M.H. Fathi, M. Meratian: Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications; Mater. Sci. Eng. A 527 (2010) 6938-6944.

DOI: 10.1016/j.msea.2010.07.063

Google Scholar

[21] Bruno Zberg, Peter J. Uggowitzer and Jörg F. Löffler: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants; Nat. Mater. 8 (2009) 887-891.

DOI: 10.1038/nmat2542

Google Scholar

[22] X. N. Gu; X. Wang; N. Li; L. Li; Y. F. Zheng; Xigeng Miao (2011). Microstructure and characteristics of the metal–ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. , 99B(1), 127–134.

DOI: 10.1002/jbm.b.31879

Google Scholar

[23] Ali Ercetin and Danil Yurievich Pimenov: Microstructure, Mechanical, and Corrosion Behavior of Al2O3 Reinforced Mg2Zn Matrix Magnesium Composites; Materials 2021, 14, 4819.

DOI: 10.3390/ma14174819

Google Scholar

[24] Jinlong SU, Jie TENG1, Zili XU2, Yuan LI: Corrosion–wear behavior of a biocompatible magnesium matrix composite in simulated body fluid; Friction 10(1): 31–43 (2022).

DOI: 10.1007/s40544-020-0361-8

Google Scholar

[25] G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta, Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications, Materials and Design 65 (2015) 104–114.

DOI: 10.1016/j.matdes.2014.08.041

Google Scholar

[26] Khandelwal, Apratim; Mani, Karthick; Srivastava, Neeraj; Gupta, Rahul; Chaudhari, G.P. (2017). Mechanical behavior of AZ31/Al 2 O 3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Composites Part B: Engineering,123(15) 64-73.

DOI: 10.1016/j.compositesb.2017.05.007

Google Scholar

[27] M. Esmaily, N. Mortazavi, J.E. Svensson, M. Halvarsson, M. Wessén, L.G. Johansson, A.E.W. Jarfors, A new semi-solid casting technique for fabricating SiC-reinforced Mg alloys matrix composites, Composites Part B: Engineering 94 (2016) 176- 189.

DOI: 10.1016/j.compositesb.2016.02.019

Google Scholar

[28] Akinwekomi, Akeem Damilola; Law, Wing-Cheung; Tang, Chak-Yin; Chen, Ling; Tsui, Chi-Pong (2016). Rapid Microwave Sintering of Carbon Nanotube-Filled AZ61 Magnesium Alloy Composites. Composites Part B: Engineering, 93 (2016 302-309.

DOI: 10.1016/j.compositesb.2016.03.041

Google Scholar

[29] C. I. Chang, Y. N. Wang, H. R. Pei, C. J. Lee, X. H. Du, J. C. Huang: Microstructure and Mechanical Properties of Nano-ZrO2 and Nano-SiO2 Particulate Reinforced AZ31-Mg Based Composites Fabricated by Friction Stir Processing; Key Engineering Materials Vol. 351 (2007) pp.114-119.

DOI: 10.4028/www.scientific.net/kem.351.114

Google Scholar

[30] Sravya Tekumalla, Najib Farhan, Tirumalai S. Srivatsan and Manoj Gupta: Nano-ZnO Particles' Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy; Metals 2016, 6, 276.

DOI: 10.3390/met6110276

Google Scholar

[31] Q.C. Jiang; X.L. Li; H.Y. Wang: Fabrication of TiC particulate reinforced magnesium matrix composite; Scripta Materialia 48 (2003) 713–717.

DOI: 10.1016/s1359-6462(02)00551-1

Google Scholar

[32] Qiao K, Zhang T, Wang K, Yuan S, Zhang S, Wang L, Wang Z, Peng P, Cai J, Liu C and Wang W (2021): Mg/ZrO2 Metal Matrix Nanocomposites Fabricated by Friction Stir Processing: Microstructure, Mechanical Properties, and Corrosion Behavior; Front. Bioeng. Biotechnol. 9:605171.

DOI: 10.3389/fbioe.2021.605171

Google Scholar

[33] Lei, T., Tang, W., Cai, S.-H., Feng, F.-F., and Li, N.-F., 2012, On the Corrosion Behaviour of Newly Developed Biodegradable Mg-Based Metal Matrix Composites Produced by in Situ Reaction,, Corros. Sci., 54, p.270–277.

DOI: 10.1016/j.corsci.2011.09.027

Google Scholar

[34] Stüpp CA, Szakács G, Mendis CL, Gensch F, Müller S, Feyerabend F, et al. Powder metallurgical synthesis of biodegradable Mg-hydroxyapatite composites for biomedical applications; Materials Science Forum Vols. 828-829 (2015) 165-171.

DOI: 10.4028/www.scientific.net/msf.828-829.165

Google Scholar

[35] Salleh, E.M., Zuhailawati, H., Ramakrishnan, S., and Dhindaw, B. K., 2017, Enhanced Mechanical Properties and Corrosion Behavior of Biodegradable MgZn/HA Composite,, Metall. Mater. Trans. A, 48(5), 2519–2528.

DOI: 10.1007/s11661-017-4028-7

Google Scholar

[36] Cao NQ, Pham DN, Kai N, Dinh HV, Hiromoto S, Kobayashi E. In vitro corrosion properties of Mg matrix in situ composites fabricated by spark plasma sintering. Metals 2017;7:358.

DOI: 10.3390/met7090358

Google Scholar

[37] J. H. Gao S.S. Hou E. C. Meng S. K. Guan, X. Y. Shi F. X. Guan, B. Yang: Fabrication and characterization of bioactive composite coatings on Mg–Zn–Ca alloy by MAO/sol–gel; J Mater Sci: Mater Med (2011) 22:1681–1687.

DOI: 10.1007/s10856-011-4349-9

Google Scholar

[38] Radha R, D. Sreekanth, Nihal Bharti, Akshay Rana: Mg-1Sn/Al2O3 biodegradable composites: Effect of Al2O3 addition on mechanical, invitro corrosion and bioactivity response; Materials Research Express 2019, 6 (10), 105411.

DOI: 10.1088/2053-1591/ab3b41

Google Scholar

[39] Dezfuli SN, Leeflang S, Huan Z, Chang J, Zhou J. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications. Mater Sci Eng C 2017; 79:647e60.

DOI: 10.1016/j.msec.2017.05.021

Google Scholar

[40] Liping Xu; Feng Pan; Guoning Yu; Lei Yang; Erlin Zhang; Ke Yang (2009). In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy; Biomaterials 30 (2009) 1512–1523.

DOI: 10.1016/j.biomaterials.2008.12.001

Google Scholar