[1]
L.C. Zhang, L.Y. Chen, A review on biomedical titanium alloys: recent progress and prospect, Adv. Eng. Mater. 21 (2019), 1801215.
DOI: 10.1002/adem.201801215
Google Scholar
[2]
M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Mater. Sci. Eng. C 102 (2019) 844-862.
DOI: 10.1016/j.msec.2019.04.064
Google Scholar
[3]
Ch. Pavan Satyanarayana, L. Ratna Raju, D. Ravikumar, B. Ratna Sunil, Producing high wettable surface on pure titanium sheets by shot peening for bone implant applications, Biointerface Res. Appl. Chem. 12 (2021) 5745-5752.
DOI: 10.33263/briac125.57455752
Google Scholar
[4]
W. Liu, S. Liu, L. Wang, Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications, Coatings, 9 (2019) 249.
DOI: 10.3390/coatings9040249
Google Scholar
[5]
Y. Wang, H. Yu, C. Chen, Z. Zhao, Review of the biocompatibility of micro-arc oxidation coated titanium alloys, Mater. Design, 85 (2015) 640–652.
DOI: 10.1016/j.matdes.2015.07.086
Google Scholar
[6]
Y. Hu, Z. Wang, J. Ai et al., Preparation of coating on the titanium surface by micro-arc oxidation to improve corrosion resistance. Coatings 11 (2021) 230.
DOI: 10.3390/coatings11020230
Google Scholar
[7]
Q. K. N. Chabuk, J. M. S. Al-Murshdy, N. M. Dawood, Review: the surface modification of pure titanium by micro-arc oxidation (MAO) process. J Phys Conf Ser. 1973 (2021) 012114.
DOI: 10.1088/1742-6596/1973/1/012114
Google Scholar
[8]
X. Zhang, Z. Peng, X. Lu et al., Microstructural evolution and biological performance of Cu-incorporated TiO2 coating fabricated through one-step micro-arc oxidation. Appl Surf Sci 508 (2020) 144766.
DOI: 10.1016/j.apsusc.2019.144766
Google Scholar
[9]
L. Zhang, B. Li, X. L. Zhang et al., Biological and antibacterial properties of TiO2 coatings containing Ca/P/Ag by one-step and two-step methods. Biomed Microdevices 22 (2020) 24.
DOI: 10.1007/s10544-020-00482-8
Google Scholar
[10]
Y. Li, W. Wang, F. Yu et al., Characterization and cytocompatibility of hierarchical porous TiO2 coatings incorporated with calcium and strontium by one-step micro-arc oxidation. Mater Sci Eng C Mater Biol Appl 109 (2020) 110610.
DOI: 10.1016/j.msec.2019.110610
Google Scholar
[11]
M. Shimabukuro, Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: A review, Antibiotics 9 (2020) 716.
DOI: 10.3390/antibiotics9100716
Google Scholar
[12]
T. Monica, C. Pieter, N. Anton, et al., Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation, Appl Surf Sci. 500 (2020) 144235.
DOI: 10.1016/j.apsusc.2019.144235
Google Scholar
[13]
N. Elham, F. Arash, R. P. A. Mohammad, Effect of ZrO2 nanoparticles addition to PEO coatings on Ti–6Al–4V substrate: Microstructural analysis, corrosion behavior and antibacterial effect of coatings in Hank's physiological solution. Ceram Int. 46(9) (2020) 13114.
DOI: 10.1016/j.ceramint.2020.02.084
Google Scholar
[14]
T. Xue, S. Attarilar, S. Liu et al., Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review. Front Bioeng Biotechnol. 8 (2020) 603072.
DOI: 10.3389/fbioe.2020.603072
Google Scholar
[15]
M. Aliofkhazraei, D. D. Macdonald, E. Matykina, et al., Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations, Appl Surf Sci Adv. 5, (2021) 100121.
DOI: 10.1016/j.apsadv.2021.100121
Google Scholar