Particulate Based AZ91 Magnesium Hybrid Composites – A Short Review

Article Preview

Abstract:

The present paper deals with the study of magnesium alloy hybrid composites. AZ91 is a popular magnesium alloy with good specific strength at room temperatures. However, it suffers with poor mechanical properties at elevated temperatures. The reinforcement materials can be prepared by polymers and ceramic particles. The selection of proper material will have a greater response on the properties. Therefore, in order to increase the mechanical responses, preparation of composites is good idea with low cost. To ensure multiple properties, it is always necessary to go with Hybrid composites. In this context, this paper reviews the materials used in the fabrication of composites, fabrication Techniques, microscopic behaviours and mechanical responses. This paper also provides research potentials along with the latest developments in the area of AZ91 Composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-59

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gupta, M., & Ling, S. N. M. (2011). Magnesium, magnesium alloys, and magnesium composites. John Wiley & Sons.

Google Scholar

[2] Guo, K. W. (2010). A review of magnesium/magnesium alloys corrosion and its protection. Recent Patents on Corrosion Science.

DOI: 10.2174/1877610801002010013

Google Scholar

[3] Chen, Y., Xu, Z., Smith, C., & Sankar, J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia, 10(11), 4561-4573.

DOI: 10.1016/j.actbio.2014.07.005

Google Scholar

[4] Yao, S., & Li, Y. F. (2016). Review on the development and application of magnesium alloys. In Design, Manufacturing and Mechatronics: Proceedings of the 2015 International Conference on Design, Manufacturing and Mechatronics (ICDMM2015) (pp.1014-1020).

DOI: 10.1142/9789814730518_0119

Google Scholar

[5] Kumar, D. S., Sasanka, C. T., Ravindra, K., & Suman, K. N. S. (2015). Magnesium and its alloys in automotive applications–a review. Am. J. Mater. Sci. Technol, 4(1), 12-30.

DOI: 10.7726/ajmst.2015.1002

Google Scholar

[6] Pai, B. C., Pillai, U. T. S., Manikandan, P., & Srinivasan, A. (2012). Modification of AZ91 Mg alloys for high temperature applications. Transactions of the Indian Institute of Metals, 65(6), 601-606.

DOI: 10.1007/s12666-012-0166-1

Google Scholar

[7] Wu, Y., Du, W., Nie, Z., Cao, L., & Zuo, T. (2007). Research status of particulate reinforced magnesium matrix composites. Xiyou Jinshu Cailiao yu Gongcheng(Rare Metal Materials and Engineering), 36(1), 184-188.

DOI: 10.1016/s0142-1123(97)82574-1

Google Scholar

[8] Lloyd, D. J. (1994). Particle reinforced aluminium and magnesium matrix composites. International materials reviews, 39(1), 1-23.

DOI: 10.1179/imr.1994.39.1.1

Google Scholar

[9] Kumar, S., Suman, K. N. S., Ravindra, K., Poddar, P., & SB, V. S. (2017). Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method. Journal of magnesium and alloys, 5(1), 48-55.

DOI: 10.1016/j.jma.2016.11.006

Google Scholar

[10] Matta, A.K., Koka, N.S.S., & Devarakonda, S.K. (2020). Recent studies on particulate reinforced AZ91 magnesium composites fabricated by stir casting-a review. Journal of Mechanical and Energy Engineering, 4.

DOI: 10.30464/jmee.2020.4.2.115

Google Scholar

[11] Horst E. Friedrich, Barry L.Mordike. (2006). Magnesium Technology: Metallurgy, Design Data, Applications Springer-Verlag Berlin Heidelberg, New York. ISBN-13 978-3-540-20599-9.

Google Scholar

[12] Xia Zhou et al. (2012). Tensile Mechanical Properties And Strengthening Mechanism Of Hybrid Carbon Nanotube And Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites. Journal of Nanomaterials, Volume 2012, Article ID 851862, 7 pages. https://doi.org/10.1155/2012/851862.

DOI: 10.1155/2012/851862

Google Scholar

[13] Mohammed Ali, R.M. Lathe. (2014). Wear Behavior of Mg Alloy Reinforced With Aluminum Oxide andSilicon Carbide Particulates. IJSRD - International Journal for Scientific Research & Development, Vol. 2, Issue 07, pp: 203- 208.

Google Scholar

[14] B. M. Girish, B. M. Satish, Sadanand Sarapure, D. R. Somashekar and Basawaraj. (2015). Wear Behavior Of Magnesium Alloy AZ91 Hybrid Composite Materials. Tribology Transactions, 58:3, 481-489. https://doi.org/10.1080/10402004.2014.987858.

DOI: 10.1080/10402004.2014.987858

Google Scholar

[15] Aatthisugan , A. Razal Rose, D. Selwyn Jebadurai. (2017). Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. Journal of Magnesium and Alloys, Volume 5, Issue 1, Pages 20-25. https://doi.org/10.1016/ j.jma. 2016.12.004.

DOI: 10.1016/j.jma.2016.12.004

Google Scholar

[16] N. Nafeed et al. (2018). Evaluation Of Mechanical Properties Of Mg Alloy/Sic/Graphite Hybrid Metal Matrix Composites Using Desirability Approach. International Journal of Pure and Applied Mathematics, Volume 119 No. 12, 15619-15627.

Google Scholar

[17] Shruti, Babu Reddy, Ambadas. (2018). Fabrication And Characterization Of Mechanical And Tribological Properties Of Sic/Al2O3/AZ91 Magnesium Based Composite Material. Journal of Emerging Technologies and Innovative Research (JETIR), Volume 5, Issue 1 , pp: 43-49.

Google Scholar

[18] Sadanand Sarapure et al. (2018). Microstructure And Mechanical Behavior Of Magnesium Alloy AZ91 Hybrid Composites. IOP Conf. Series: Materials Science and Engineering, 310, 012161. https://doi.org/10.1088/1757-899X/310/1/012161.

DOI: 10.1088/1757-899x/310/1/012161

Google Scholar

[19] Ravi Kumar Saranu , Ratnam Chanamala , SrinivasaRao Putti. (2020). Processing, micro structures and mechanical properties of AZ91E, SiC and fly ash composites: A review. Materials Today: Proceedings, Available online 13 March 2020. https://doi.org/10.1016/j.matpr.2020.02.555.

DOI: 10.1016/j.matpr.2020.02.555

Google Scholar

[20] Yadav, S. D., Bhingole, P. P., Chaudhari, G. P., Nath, S. K., & Sommitsch, C. (2015). Hybrid processing of AZ91 magnesium alloy/nano-Al2O3 composites. In Key Engineering Materials (Vol. 651, pp.783-788). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/kem.651-653.783

Google Scholar

[21] Ma, B. X., Wang, H. Y., Wang, Y., & Jiang, Q. C. (2005). Fabrication of (TiB2− TiC) p/AZ91 magnesium matrix hybrid composite. Journal of materials science, 40(17), 4501-4504.

DOI: 10.1007/s10853-005-0886-2

Google Scholar

[22] Saranu, R., Chanamala, R., & Putti, S. R. (2020, September). Corrosion and tribological behavior of magnesium metal matrix hybrid composites-A review. In AIP Conference Proceedings (Vol. 2259, No. 1, p.020018). AIP Publishing LLC.

DOI: 10.1063/5.0015690

Google Scholar

[23] Amandeep Singh, Niraj Bala, , 2017, Review on Wear Behavior of Magnesium Matrix Composites, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) ESDST- 2017 (VOLUME 5 – ISSUE 05).

Google Scholar

[24] Saranu, R. K., Chanamala, R., Putti, S. R., & Mallarapu, G. K. (2021). Investigation of Microstructures, Mechanical Properties of AZ91E Hybrid Composite Reinforced with Silicon Carbide and Fly Ash. Silicon, 13(7), 2145-2156.

DOI: 10.1007/s12633-020-00671-3

Google Scholar

[25] Singaiah, K., Babu, G. R., Singaiah, G., & Sunil, B. R. (2022). Machining behaviour of AZ91E hybrid composite reinforced with granite and fly ash powders. Engineering Research Express, 4(1), 015035.

DOI: 10.1088/2631-8695/ac5a79

Google Scholar

[26] Jayabharathy, S., & Mathiazhagan, P. (2020). Investigation of mechanical and wear behaviour of AZ91 magnesium matrix hybrid composite with TiO2/graphene. Materials Today: Proceedings, 27, 2394-2397.

DOI: 10.1016/j.matpr.2019.09.142

Google Scholar

[27] Aatthisugan, I., Rose, A. R., & Jebadurai, D. S. (2017). Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. Journal of magnesium and alloys, 5(1), 20-25.

DOI: 10.1016/j.jma.2016.12.004

Google Scholar

[28] Sarapure, S., Satish, B. M., & Girish, B. M. (2018, February). Microstructure and Mechanical Behavior of Magnesium Alloy AZ91 Hybrid Composites. In IOP Conference Series: Materials Science and Engineering (Vol. 310, No. 1, p.012161). IOP Publishing.

DOI: 10.1088/1757-899x/310/1/012161

Google Scholar

[29] Wang, X. J., Hu, X. S., Liu, W. Q., Du, J. F., Wu, K., Huang, Y. D., & Zheng, M. Y. (2017). Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites. Materials Science and Engineering: A, 682, 491-500.

DOI: 10.1016/j.msea.2016.11.072

Google Scholar

[30] Vinod, B., & Anandajothi, M. (2020). Dry sliding wear mechanisms of incorporated hydroxyapatite waste materials: synthesis and characterization of magnesium hybrid composites. Transactions of the Indian Institute of Metals, 73(12), 3037-3057.

DOI: 10.1007/s12666-020-02103-7

Google Scholar

[31] Anand, N. (2020). Development and influence of tribomechanical properties on magnesium-based hybrid metal matrix composites-a review. Materials Research Express, 7(3), 036520.

DOI: 10.1088/2053-1591/ab7d08

Google Scholar

[32] Srivatsan, T. S., Manigandan, K., Godbole, C., Paramsothy, M., & Gupta, M. (2012). The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel. Advances in materials Research, 1(3), 169.

DOI: 10.12989/amr.2012.1.3.169

Google Scholar

[33] Kumar, D. S., & Suman, K. N. (2021). Wheels in automotive industry—A case study toward the development of magnesium-based composite wheels. In Biocomposite and Synthetic Composites for Automotive Applications (pp.275-304). Woodhead Publishing.

DOI: 10.1016/b978-0-12-820559-4.00011-0

Google Scholar